Intro to probabilistic DL models
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What is a probabilistic model?



Simple regression via a NN: no probabilistic model in mind
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One input x (age) =2 one predicted outcome (sbp)



Traditional versus probabilistic regression DL models
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Binary classification: no probabilistic model in mind

Fake or real?

Xx=85b — —  fake

One input x = one predicted outcome



Traditional versus probabilistic classification DL models
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Why is it important to know about probabilities?

Philosophical reasons:

“It is scientific to say what is more likely and what is less likely...”
Richard Feynman

Practical reasons:

We often want to optimize expected costs which requires CPD for computing.



Probabilistic travel time prediction

Let’s use my
probabilistic travel
time gadget!
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How to fit a probabilistic model?



How to train a NN to output the parameter of a CPD?

- use the beautiful maximum likelihood principle
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How to get the variance which is assumed to be constant?

The constant variance drops out in the MSE optimization. There are
two ways to get it after the fitting. Then u,; are the predicted
means.

« From residuals after fitting, it’s.
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« By optimizing the variance ¢ in the NLL
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Fit a probabilistic regression with non-constant variance
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Modelling the standard deviation (positive values)

* The variance or standard deviation are both positive
* Neural networks output is not constrained.
 Two common approaches to fix this (exp or softplus)

10
— softplus
— exp
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Figure 5.sp: The softplus function compared with the exponential function. Both functions map
arbitrary values to positive values.
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Fit a probabilistic regression with flexible non-constant variance

Yxi =(Y[X;) ~ N(/uxi ’Jf)
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Minimize the negative
log-likelihood (NLL):
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Note: we do not need to know the “ground truth for s” — the likelihood does the job!
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How to evaluate

a probabilistic prediction model?
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Check prediction quality on NEW data

It's difficult to whake predictions,
especially aboudtthe future

Nils Bohr, physics Nobel price 1922

Common data split:
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Train-data(50%) Validation-data(25%) Test-data(25%)
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Visually: Do predicted and observed outcome distribution match?

Validation data along with predicted Validation data along with predicted
outcome distribution (Gauss with const o) and observed outcome distribution

800 1

400

A large validation data set is needed to ensure underlying assumption:
observed distribution = data generating distribution
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Simulate some challenging data for linear regression models

train data validation data
50 50 -
40 - 40
& g e
30 1 ". i ' . 30 g .
20 ."' i % 20 - ’ " =
% 00 ‘A. @ () ...o'
0 L J Se0 g @ @ @ @
> 101® 0 .. %‘ ’ @ed > - ® .' o e @ ® o .
'e .‘ eo® °® o“ * ° o ‘i. c @ -
[ ] ® on I
o..‘ o% ’." l-q ¥ 0{ o ©e0® ° o ©
“‘ o @ ® g o o* ® ® *
-10{e &g © ® :% oo ° -10 ¢ 2
@ ® @
-20 1 -20
L ] @ 5
-30 T =30
-1 0 1 2 3 4 5 6 -1 0 1 2 3 4 5 6
X X

Model_1 (linear regression with constant variance): (Y| X) ~ N(x,,0°)

Model_2 (linear regression with flexible variance): (y|X)~N(u,o?)
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Predicted outcome distribution from model_1 (constant o)
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Root mean square error (RMSE) or mean absolute error (MAE)
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RMSE and MAE alone do not capture performance for probabilistic models!

Both only depend on the mean () of the CPD, but not on it’s shape or spread (o) and are not
appropriate to evaluate the quality of the predicted distribution of a probabilistic model.
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Scoring Probabilistic Forecasts: The Importance of Being Proper
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ABSTRACT

Questions remain regarding how the skill of operational probabilistic forecasts is most usefully evaluated
or compared, even though probability forecasts have been a long-standing aim in meteorological forecast-
ing. This paper explains the importance of emploving proper scores when selecting between the various
measures of forecast skill. It is demonstrated that only proper scores provide internally consistent evalua-
tions of probability forecasts, justilying the focus on proper scores independent of any attempt to influence
the behavior of a forecaster. Another property of scores (i.e., locality) is discussed. Several scores are
examined in this light. There is, effectively, only one proper, local score for probability forecasts of a
continuous variable. It is also noted that operational needs of weather forecasts suggest that the current
concept of a score may be too narrow; a possible generalization is motivated and discussed in the context
of propriety and locality.

https://journals.ametsoc.org/doi/full/10.1175/WAF966.1
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Scores to evaluate probabilistic prediction models

« We need validation data: (x,,;, Vyai1)
- We need predicted outcome distribution, given x: p,eq(y|x)
 The score S takes one instance and yields .

a real number (smaller is better)
S(ppred (ylxval): yval)

22 7 7 age

Example 1: NLL (aka log-score, ignorance):
SNLL (ppred (Y|xval)r :Vval) = _log(ppred (:Vvallxval))

Example 2: weighted MSE:
SwMSE (ppred (ylxval)r yval) = f (YUal - y)z Ppred (Y|Xval) dy
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Empirical loss as average score

* If we use a validation set with n instances (x;q;,, Yyai;) 10 €valuate

the model, the average score is used as empirical loss:

empirical 1055 =~ "5  Pyus (¥ X ) Voo
i=1

« The empirical loss approximates the expected loss:

expected 1055 = [S(Pyeq (Y1 X), ') Py (¥’ X) dX'dy’
y

Ppreq - Predicted distribution
Derue - data generating distribution
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Local scores

A score is local if the predicted distribution is evaluated only at the actual

observed outcome of the validation data

S(ppred (ylxval): YUal) — S(ppred (yval |xval)» yval)

Example 1: NLL (aka log-score, ignorance):
SNLL (ppred Y lxpa1), YUal) = _log(ppred Vvail®par))

Example 2: linear score
SNL (ppred Wlxpar), YUal) = ~Ppred Vvarlcvar)

2 r 71 age
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Proper Scores

For a proper score holds:

The expected value of a proper score takes its minimal (optimal) value, if
predicted distribution p,,,.q = Pty data generating distribution

The expected value of a strictly proper score takes its minimal value, only if
predicted distribution p,,.q = prue data generating distribution

J I S@erue@1x"), ¥ )erue ', x Ay dx" < [ [ S(Pprea @1x'), ¥ )Perue ', )Y dx" i Dprea # Perue

The score with true cdf The score with predicted cdf
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The log-score is strictly proper

To show: ffS(ppred(ylx’): y,)ptrue(y’:x,)dy’dx’>ffS(ptrue(ylx’)»y’)ptrue(y’» x')dy'dx’

[ S(Porea (V1X),Y') e (X)) Ay’ = [ S(Pie(Y1X),Y"): P (Y1 X) dx'dly” +

X,y X,y

{J‘ S(ppred(ylxl)’y')'ptrue(y"x') dX'dy' o J‘S(ptrue(ylxl),y')'ptme(y',xl) dX'dy}

>0 for strictly proper scores S

Proof that NLL is strictly proper Sy ( PCY [ Xa)s Voa ) - Iog( P(YVea | Xval))

:SNLL(ppred(y| Xl)’ y') ptrue(yl’xl) dxldyl o J.SNLL(ptrue(y|X')1 yl) ptrue(Y',X') dX'dy'

=.'—Iog(ppred(Y'|x'))-ptme(y',x') dx'dy"' - I—Iog(ptme(y'lx'))-ptme(y',x') dx'dy"

= Prrye (VX)) P(X) = Prre (Y1X)-P(X)

I Xl 1 1 1 ) 1
= [1og| RV XD 5 51Xy P (X) G = KL (P10 Py (10) >0 ¥ Py # P
ppred(y |X)
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The linear score is not proper

The linear score is not proper, meaning p;,. does not yield the best expected score.

I|n ( p(y | Xval) yval) p(yval | Xval)

0.20
1

015
|

Ptrue ppred

)= S (Pre(Y1X),¥) Pe (¥, X") X" dly

density
0.10
1

= [P (V' 1X)- P (¥, X)) dx'dly”
y

If Derue 1S NOL constant, then thereisa y
higher than mean probability:

0.05
|

0.00
|

o ptrue (y | X ') < E Ptrue (S Ptrue )

Proof: y'—
Construct ppeq that scores better than pye: Poea (V[ X) =— kerne|(

(Sp,..) = f Porea (Y[ X) - P (¥, X) XY™ = =P (VIX) < Ep (Sp)

ptrue
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The uniqueness of the log-score

It is provable that the log-score is the only smooth, proper and local

score for continuous variables
(Bernardo, J. M., 1979: Expected information as expected utility. Ann. Stat., 7, 686—690)

SNLL ( p(y | Xval)’ yval ) = _Iog( p(yval | Xval))

2 7 71 age
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Prominent Scores for binary classifiers

Definition 9.9 (Scoring rules for binary predictions) Let ¥ ~ B(mr) be the predic-
tive distribution for a binary event, i.e.

for y =1,

| —m fory=0.

The Brier score BS, the absolute score AS and the logarithmic score LS are defined

as
Leonhard Held

Strictly proper: BS(f(y).yo) = (vo — )%, e
Not proper:  AS(f(y), o) =|yo—7| and Appl ied
Strictly proper:  LS(f (). yo) = —log f (yo). Statistical

respectively.

Inference

Remark: For binary classification, the log score
is not the only strictly proper score.




NLL as general cure-all in probabilistic modeling

Maximize likelihood < minimize negative log-likelihood (NLL)

The log-score (NLL) is strictly proper score for regression.

The log-score (NLL) is also strictly proper for classification models.

To train a probabilistic model: minimize NLL!

To evaluate or compare probabilistic models: use the validation NLL!
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Use validation NLL to compare probabilistic models

Model 1 (linear regression with constant variance):

(¥ %)~ N(z,,0°)

204

=
o
1 n
mean NLL ==>"~log( p(Yya, [Xa,))
-20 n i=1
0.0 25 50 75 10.0
X
Model 2 (linear regression with flexible variance):
407 11‘- s
. S _ 2
, (Y1x) ~ N(g,, 0y)
current mean_NLL = 4.84 I Tho,
204 #
=

-20

0.0 25 50 7.5 10.0



How to develop a highly performant

probabilistic model for count data?



Probabilistic models for count data

Goal: Probabilistic model for deer activity conditioned on the time (in day and year).

wild year

0 2002.0

0 2002.0

1 2002.0
i 0 2002.0
== - 0 2002.0

time

0.000000

0.020833

0.208333

0.229167

0.270833

The columns have the following meaning:

daytime

night.am

night.am

night.am

pre.sunrise.am

pre.sunrise.am

wild: the number deers killed in a road accident in Bavaria

weekday

Sunday

Sunday

Sunday

Sunday

Sunday

year: the year (from 2002 to 2009 in the training set from 2010 to 2011 for the test set)

time: the number of days to the first event. These numbers are measured in fractions of a day.

Data on deer related car accidents in the years 2002 until 2011 in Bavaria, Germany.
Target variable (wild): use number of deers killed during 30 minute period as surrogate
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Modeling count data

Goal:
Predict CPD for y=#deers-killed-in-30min, given x (time and derived variables).

Possible CPD models:
(y|x) ~ Pois(4,)

(y1x)~ZIP(*p,, 4,)
(y| x) ~ discretizedLogisticMix(*p,, °p, °p,, ‘1, ‘1, *p,, 'y, 2o, °o))

Marginal distribution of deer killed in 30min
60000 4

50000 A

40000 -

30000 A

Frequency

20000 1

10000 -

0 {{TTT?,..‘M‘O’W
0 5 10 15 20 25 30 35 40
Count: number of deers killed




Validation NLL allows to rank different probabilistic models

discLogMix
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Take home messages

A probabilistic model predicts for each input a whole outcome CPD

» Use the NLL for training, evaluating and comparing probabilistic models
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