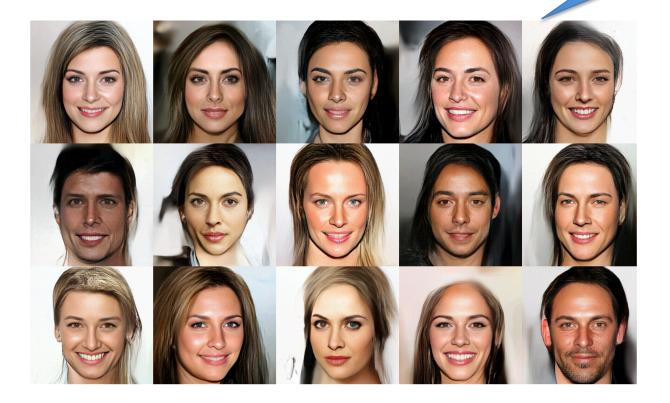
Go with the flow An introduction to normalizing flows

These people are not real they are generated samples using NF

1



Oliver Dürr Brown Bag Seminar HTWG 25/October/2019

A bit of Motivation

• A the End of the lecture, you can create and understand something like:

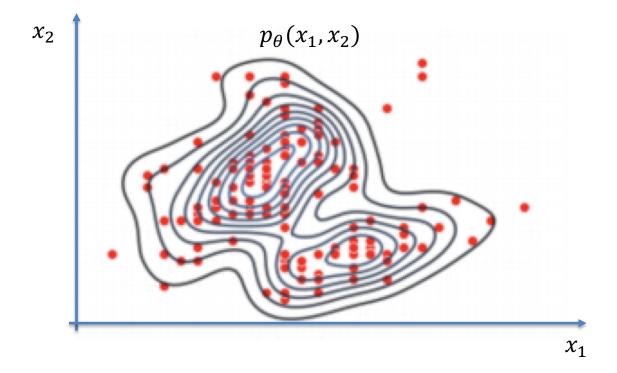
- Look at the intermediate pictures, they look real.
- Persons no celebrities (not part of celebA-HQ used for training)

Outline

- Classification and motivate NF
 - Density Estimation
 - Generative Models
 - Need for flexible distributions
- Change of Variables
- Using networks to control flows
 - RealNVP
 - If time Autoregressive Flows
- Glow for image data
- Demo code is currently in
 - <u>https://github.com/tensorchiefs/dl_book/tree/master/chapter_06</u>

Normalizing Flows

- An novel method of parametric density estimation
 - Example of parametric density estimation 2-D Gaussians with μ and Σ

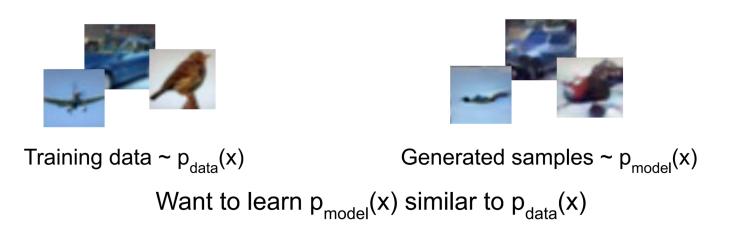


• Density Estimations are generative models...

Image from Priyank Jaini talk

Definition: Generative Model [cs231n]

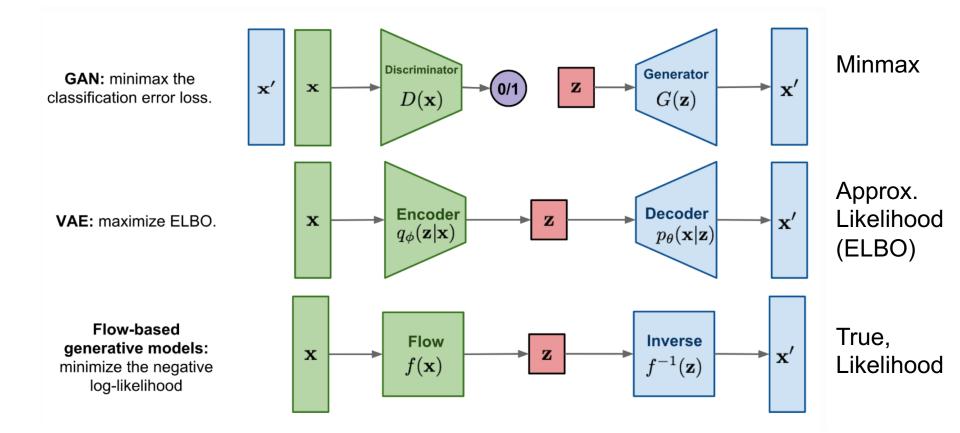
Given training data, generate new samples from same distribution.



Several flavors:

- Explicit density estimation: explicitly define and learn $p_{model}(x)$
- Implicit density estimation: learn model that can sample from $p_{model}(x)$ w/o explicitly having a density

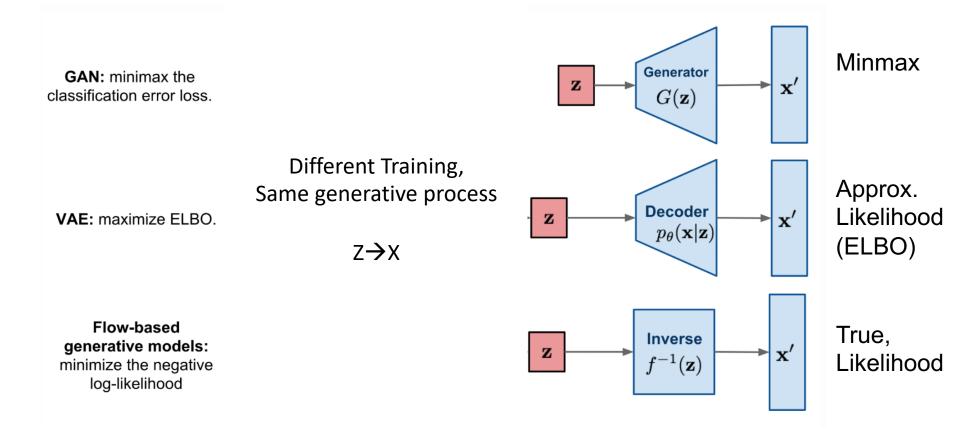
Generative models currently (2019) on vogue



VAEs and GANs have been covered in Datalab BBS

Image (modified) from: https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html 7

Generative models on vogue



VAEs and GANs have been covered in Datalab BBS

Image (modified) from: https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html 8

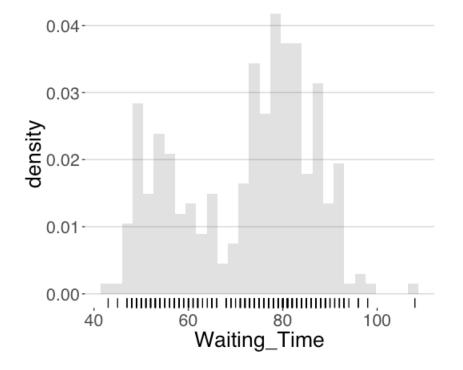
Theory: Name Some Distributions

- Gaussian
- Uniform
- Weibull
- Binomial
- Log-Normal

These are the distributions we have in our Toolbox.

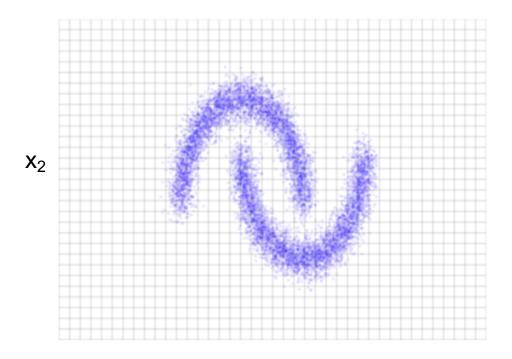
Is the reality like this?

Reality: Data (1-D)



What distribution can you use?

Reality: Data (2-D)

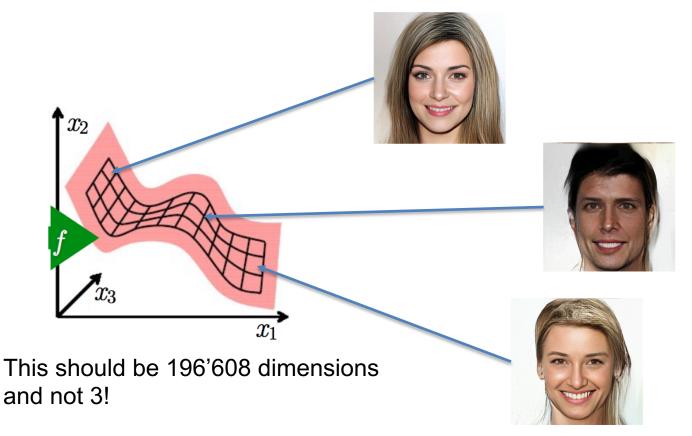


X₁

What distribution can you use?

Reality: Data (256x256x3=196'608 Dimensions)

3 data points **sampled** from the high dimensional distribution

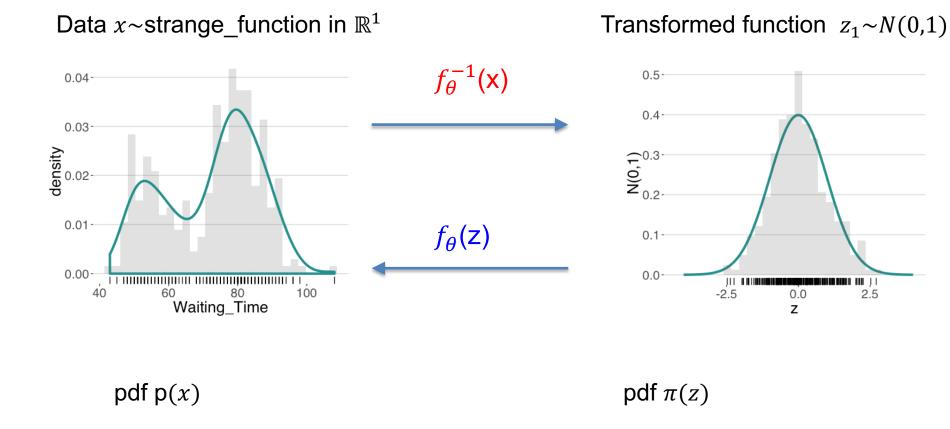


What distribution can you use?

Approches for Density Estimation task, we want $p_{\theta}(X)$:

- For easy cases fit normal "estimate mean and variance"
 - Limited to simple distributions
- Mixtures of simple Distributions such as Gaussian
 - Limited to fairly simple distribution
- Kernel Density estimation / Histograms
 - Non-Parametric, low dimensions (non-sparse)
- Copulas (since yesterday)
 - Limited to some 10 or 100 dimensions
- MCMC
 - Allows to **sample** from complicated distributions
- GANs (only have an *implicit* estimation can sample from p(X))
- VAE (only have an approximation to p(X))
 - $\log(p(x)) = L^{\nu} + \frac{D_{Rl}(q(z|x)||p(z|x))}{p(z|x)}$ the KL-Term is disregarded
- Normalizing Flows

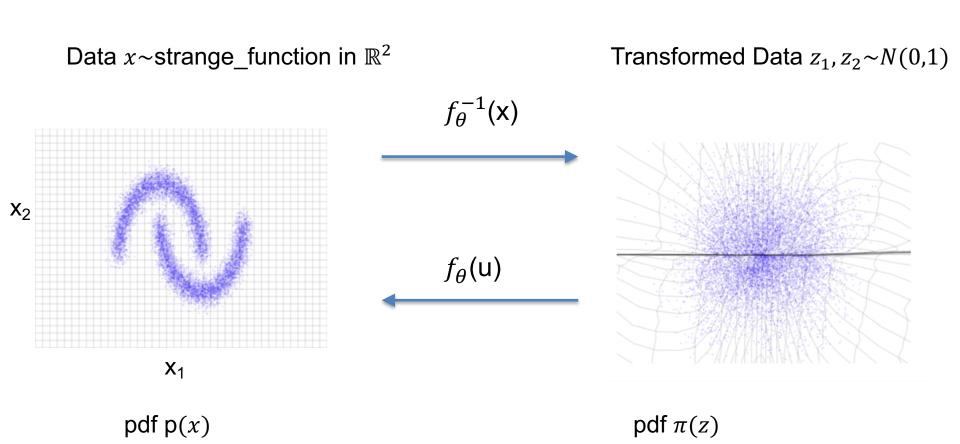
Main Idea of Normalizing Flows



Idea: learn an *invertible* transformation to simple function usually Gaussian N(0,1)

- Sampling from p(x): sample $z^* \sim \pi(z)$ then transform it via $f_{\theta}(z^*)$
- Density of x*: calculate $z^* = f_{\theta}^{-1}(x^*)$ and evaluate $N(z^*; 0, 1)$

Main Idea of Normaliuing Flows

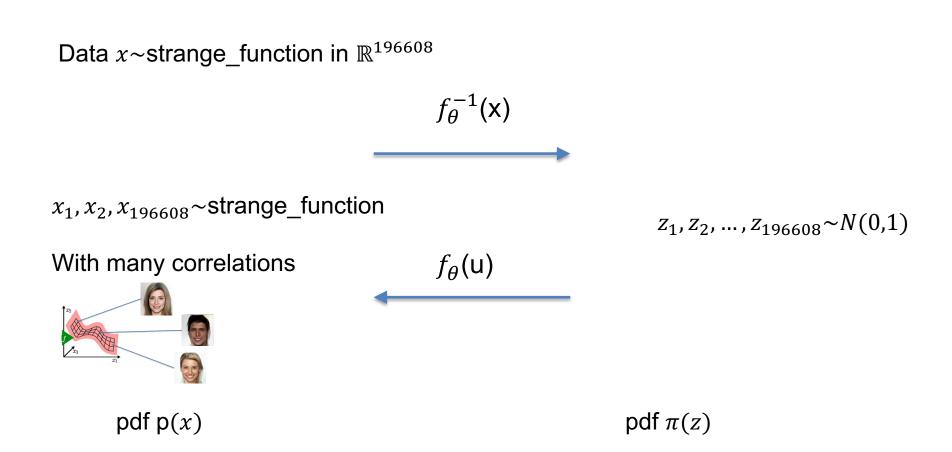


Idea: learn an *invertible* transformation to simple function usually Gaussian N(0,1)

- Sampling from p(x): sample $z^* \sim \pi(z)$ then transform it via $f_{\theta}(z^*)$
- Density of x*: calculate $z^* = f_{\theta}^{-1}(x^*)$ and evaluate $N(z^*; 0, 1)$

Image Credit: RealNVP

Main Idea of Normalizing Flows



Idea: learn an *invertible* transformation to simple function usually Gaussian N(0,1)

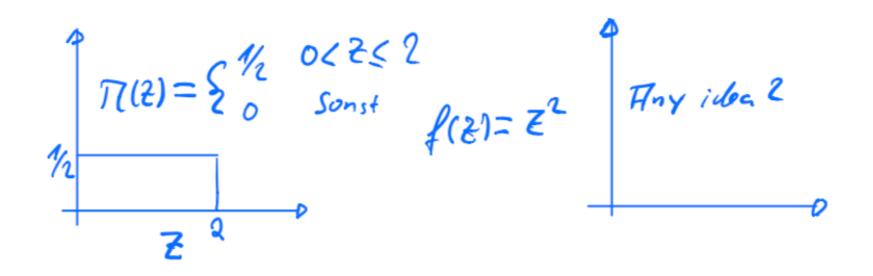
- Sampling from p(x): sample $z^* \sim \pi(z)$ then transform it via $f_{\theta}(z^*)$
- Density of x*: calculate $z^* = f_{\theta}^{-1}(x^*)$ and evaluate $N(z^*; 0, 1)$

Transformation of Variables -- Some math

Simple Transformation

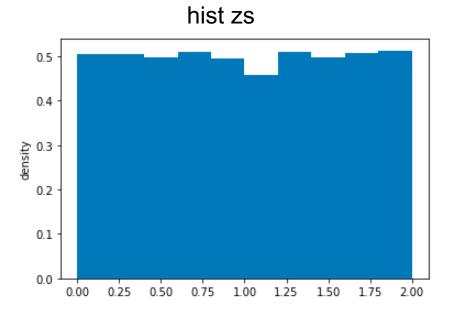
- Say you have z~*Uniform*(0,2)
- $f(z) = z^2$

N = 10000 d = tfd.Uniform(low=0, high=2) zs = d.sample(N) x = zs**2

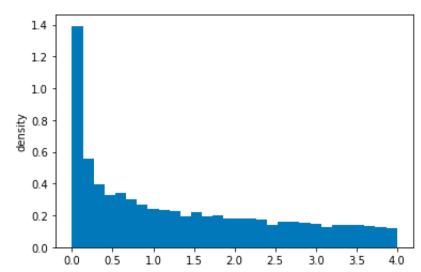


Try to come up with an answer, how is z distributed?

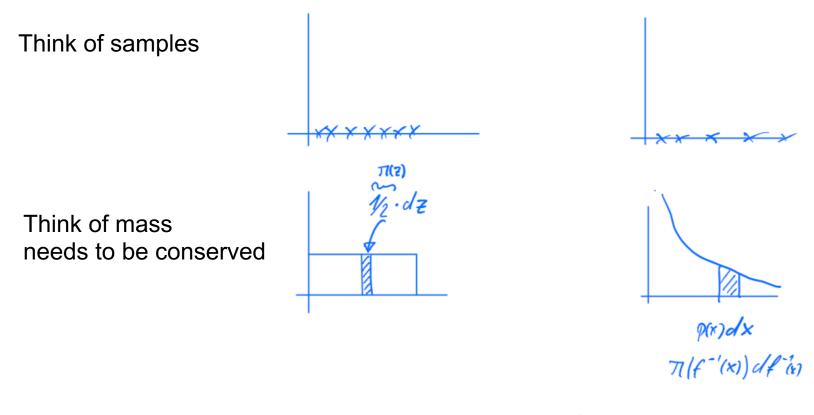
Try it



hist zs**2

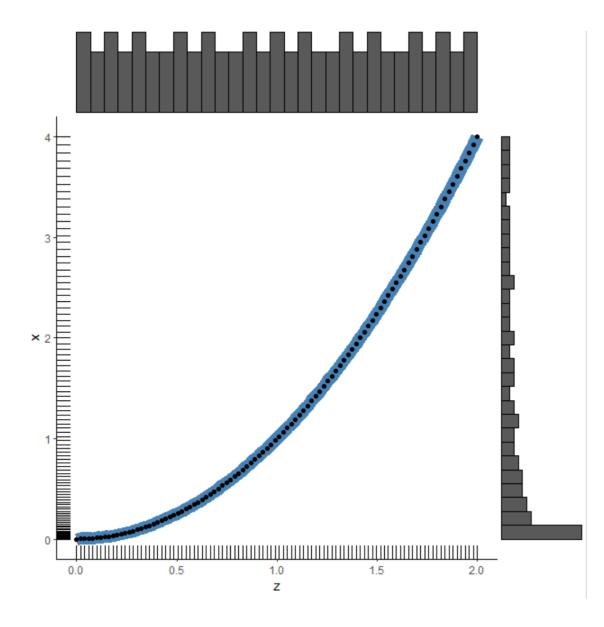


What happened? Probability Mass needs to be conserved



 $\pi(z)dz = p(x)dx$

Annother View



1-D

$$\pi(z) dz = p(x) dx$$

$$\Rightarrow p(x) = \pi(z) \frac{dz}{dx}$$

$$x = f(z) \Rightarrow z = f^{-\tau}(x)$$

$$\Rightarrow p(x) = \pi(f^{-\tau}(x)) \frac{df^{-\tau}(x)}{dx}$$

$$\Re = z^{2} \Rightarrow z = f^{-\tau}(x) = \sqrt{x}$$

$$p(x) = \pi(\sqrt{x}) \frac{d\sqrt{x}}{dx}$$

$$p(x) = \pi(\sqrt{x}) \frac{d\sqrt{x}}{dx}$$

$$p(x) = \int_{2}^{1} \frac{1}{2} \frac{1}{\sqrt{x}}$$

$$0 < x \le y$$

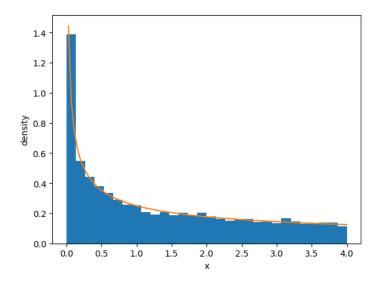
٥

Here $\left|\frac{df^{-1}(x)}{dx}\right|$ since $\frac{df^{-1}(x)}{dx}$ can be negative.

du and dx are positive by definition.

Definition in TFP

Listing 6.tfb2: The first bijector	Listing 6.tfb3: The simple example in TFP
<pre>tfb = tfp.bijectors g = tfb.Square() #A g.forward(2.0) #B g.inverse(4.0) #C</pre>	# 10 20 30 40 50 55 #12345678901234567890123456789012345678901234 g = tfb.Square() #A
#A This is a simple <u>bijector</u> going from z → z**2 #B Yields 4 #C Yields 2	<pre>db = tfd.Uniform(0.0,2.0) #A2 mydist = tfd.TransformedDistribution(#B distribution=db, bijector=g)</pre>
	<pre>xs = np.linspace(0.001, 5,1000) px = mydist.prob(xs) #C</pre>



https://github.com/tensorchiefs/dl_book/blob/master/chapter_06/nb_ch06_03.ipynb23

Learning to flow

• How probable (well density) is a data point xi

$$p_x(x_i) = p_z(g^{-1}(x_i))$$

• All Data points

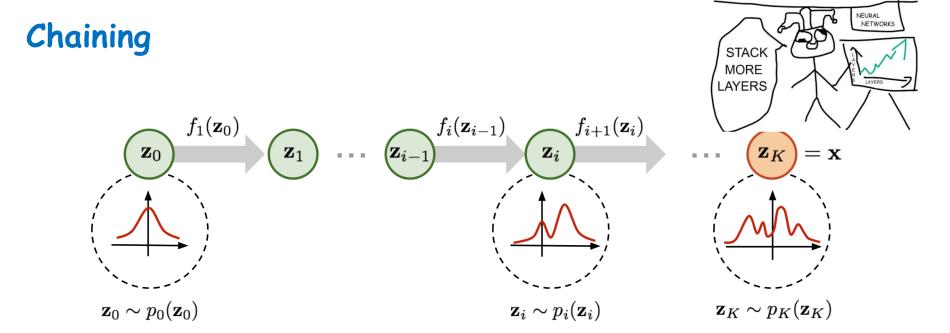
 $\prod_{i=1}^n p_x(x_i)$

• Affine linear

 $g(x) = a \cdot z + b$

Tune the parameter(s) θ of the model M so that (observed) data is most likely!

<u>https://github.com/tensorchiefs/dl_book/blob/master/chapter_06/nb_ch06_03.ipynb</u>



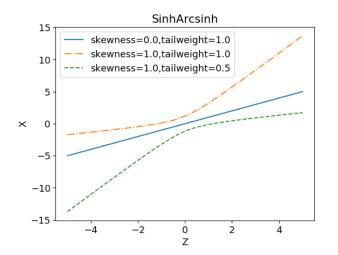
 $z_{0} > z_{1} > z_{2}$ $p_{z_{1}}(z_{1}) = p_{z_{0}}(z_{0}) \cdot |g_{1}'(z_{0})|^{-1}$ $p_{z_{2}}(z_{2}) = p_{z_{1}}(z_{1}) \cdot |g_{2}'(z_{1})|^{-1}$

 $p_{z_2}(z_2) = p_{z_0}(z_0) \cdot |g_1'(z_0)|^{-1} \cdot |g_2'(z_1)|^{-1}$ $log(p_{z_2}(z_2)) = log(p_{z_0}(z_0)) - log(|g_1'(z_0)|) - log(|g_2'(z_1)|)$

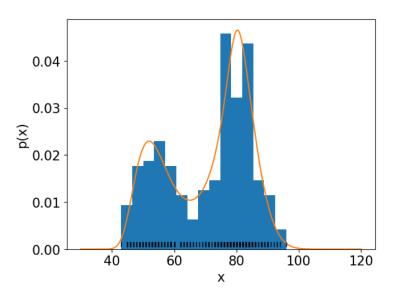
$$log(p_x(x)) = p_{z_0}(z_0) - \sum_{i=1}^k log(\frac{dg_i(z_{i-1})}{dz_{i-1}})$$

Practical example

• Need non-linearity



• Geyser Data



Going to higher dimensions

Transformation in high dimensions

$$g(z) = \begin{pmatrix} g_1(z_1, z_2, z_3) \\ g_2(z_1, z_2, z_3) \\ g_3(z_1, z_2, z_3) \end{pmatrix}$$

$$\frac{\partial g(z)}{\partial z} = \begin{pmatrix} \frac{\partial g_1(z_1, z_2, z_3)}{\partial z_1} & \frac{\partial g_1(z_1, z_2, z_3)}{\partial z_2} & \frac{\partial g_1(z_1, z_2, z_3)}{\partial z_3} \\ \frac{\partial g_2(z_1, z_2, z_3)}{\partial z_1} & \frac{\partial g_2(z_1, z_2, z_3)}{\partial z_2} & \frac{\partial g_2(z_1, z_2, z_3)}{\partial z_3} \\ \frac{\partial g_3(z_1, z_2, z_3)}{\partial z_1} & \frac{\partial g_3(z_1, z_2, z_3)}{\partial z_2} & \frac{\partial g_3(z_1, z_2, z_3)}{\partial z_3} \\ \end{pmatrix}$$

$$p_x(x) = p_z(z) \cdot \left| det\left(\frac{dg(z)}{dz}\right) \right|^{-1}$$

Requirements for the bijectors

A flow is composed of serval possible different *f*'s, the bijectors in TFP language. The following restrictions apply for them

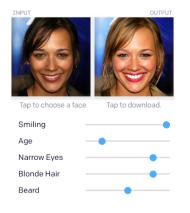
- *f* needs for be invertible (strict requirement)
- Training
 - Fast calculation of $f^{-1}(x)$
 - Fast calculation of Jacobi-Determinant
- Application:
 - Fast calculation of f(z)

Flows with networks

Flows using networks

2 Main lines of research

- Guided by autoregressive (AR) models
 - All AR models like Wavenet can be understood as normaliuing flows
 - Mask Autoregressive Flow (MAF)
 - Inverse Mask Autoregressive Flow (IMAF)
- Using 'handcrafted' network based flows
 - NICE (1410.8516 Dinh, Krueger, Bengio)
 - RealNVP (<u>1605.08803</u> Dinh, Dickstein, Bengio)
 - Glow (https://arxiv.org/abs/1807.03039 Kingma, Dahriwal)
- Unifying framework (Triangular Maps)
 - SOS paper ICML <u>https://arxiv.org/abs/1905.02325</u>



Requirement / Design considerations

- Fast calculation of f(z), $f^{-1}(x)$
- Crucial: We need fast calculation of Jacobi Matrix

$$- \left| \det \left(\frac{\partial f_i(z)}{\partial z_j} \right) \right|^{-1} \qquad \left(\begin{array}{ccc} \frac{\partial f_1(z)}{\partial z_1} & \frac{\partial f_1(z)}{\partial z_2} & \frac{\partial f_1(z)}{\partial z_3} \\ \frac{\partial f_2(z)}{\partial z_1} & \frac{\partial f_2(z)}{\partial z_2} & \frac{\partial f_2(z)}{\partial z_3} \\ \frac{\partial f_3(z)}{\partial z_1} & \frac{\partial f_3(z)}{\partial z_2} & \frac{\partial f_3(z)}{\partial z_3} \end{array} \right)$$

- Lin. Alg.: The determinant of triangular matrix is sum of diagonal terms (trace)
 - Want triangular matrix $\frac{\partial f_1(z)}{\partial z_2} \stackrel{!}{=} 0$
 - $\Rightarrow f_1(z) = f_1(z_1, \frac{z_2, z_3}{z_2}), f_d(z) = f_1(z_1, \dots, z_d, \frac{z_{d+1}, z_{d+2, \dots}}{z_{d+2, \dots}})$ Diagonal terms $\frac{\partial f_2(z)}{\partial z_2}$ easy to be calculated (no network!)
- $\frac{\partial f_2(z)}{\partial z_1}$ no restrictions, can be as complicated as hell (neural network)

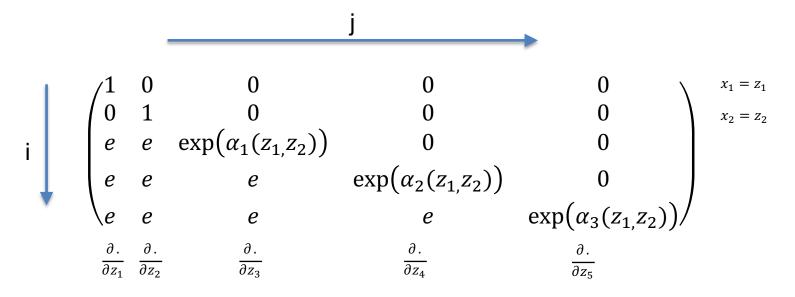
Simple Solution

Blackboard

- Netz
- Invertierbarkeit (pice of cake)
- Jacobi Determinante

Simple Solution

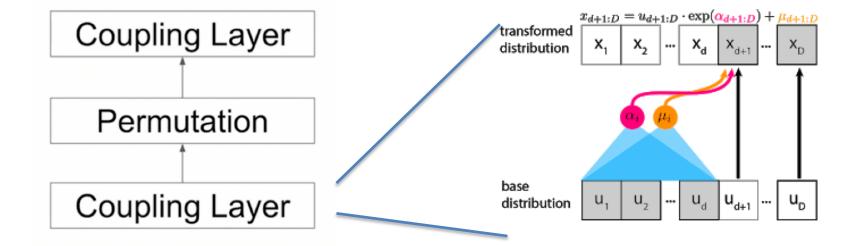
- Blackboard
 - Netz
 - Invertierbarkeit (pice of cake)
 - Jacobi Determinante

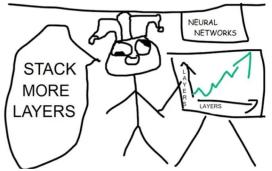


e=don't care

Stack more Layers (Permutation)

- In RealNVP
 - d is arbitrary and also the ordering
- When stacking several coupling layers put fixed permutation of dimensions in between
- Fix permutation is invertible and det=1 (If a bijection)





Example

#123456789012345678901234567890123456789012345678901234

bijectors=[] #A

h = 32

for i in range(5): #B

net = tfb.real_nvp_default_template(hidden_layers=[h, h])#C

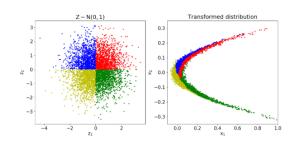
bijectors.append(tfb.RealNVP(shift_and_log_scale_fn=net,num_masked=num_masked))#D

```
bijectors.append(tfb.Permute([1,0])) #E
```

self.nets.append(net)

```
bijector = tfb.Chain(list(reversed(bijectors[:-1])))
```

```
self.flow = tfd.TransformedDistribution(#F
distribution=tfd.MultivariateNormalDiag(loc=[0., 0.]),
bijector=bijector)
```



Glow for image data --arXiv:1807.03039

Glow: Generative Flow with Invertible 1×1 Convolutions

> Diederik P. Kingma^{*}, Prafulla Dhariwal^{*} OpenAI, San Francisco

Specialties of glow

- Use 1x1convolutions instead of Permutation
- Image Data
 - Multiscale Architecture (also in RealNVP Paper)
 - X and Z are now tensors (3 dimensional, shape w,h,c)
 - Keep the w,h dimension work on the channel dimension
 - The channel dimension get's larger by squeeze operation (see below)
 - As before (Affine coupling layer now with tensors)

Glow (Details of the affine coupling layer)

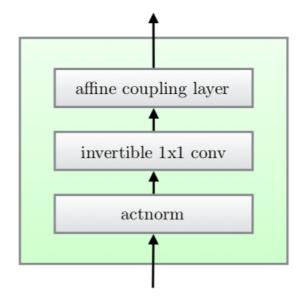
$$egin{aligned} \mathbf{x}_a, \mathbf{x}_b &= \mathtt{split}(\mathbf{x}) \ (\log \mathbf{s}, \mathbf{t}) &= \mathtt{NN}(\mathbf{x}_b) \ \mathbf{s} &= \exp(\log \mathbf{s}) \ \mathbf{y}_a &= \mathbf{s} \odot \mathbf{x}_a + \mathbf{t} \ \mathbf{y}_b &= \mathbf{x}_b \ \mathbf{y} &= \mathtt{concat}(\mathbf{y}_a, \mathbf{y}_b) \end{aligned}$$

X has dimensions e.g. (128x128x12)X_a has dimensions e.g. (128x128x6)X_b has dimensions e.g. (128x128x6)

NN is CNN, **s** is vector with length = depth of x_a

Glow (new incredients)

- Additional actnorm (like a batchnorm for batch siue 1)
- Instead of a permutation 1x1 convolution is used (simple Matrix Multiplication)
- They stack 32 of those layers



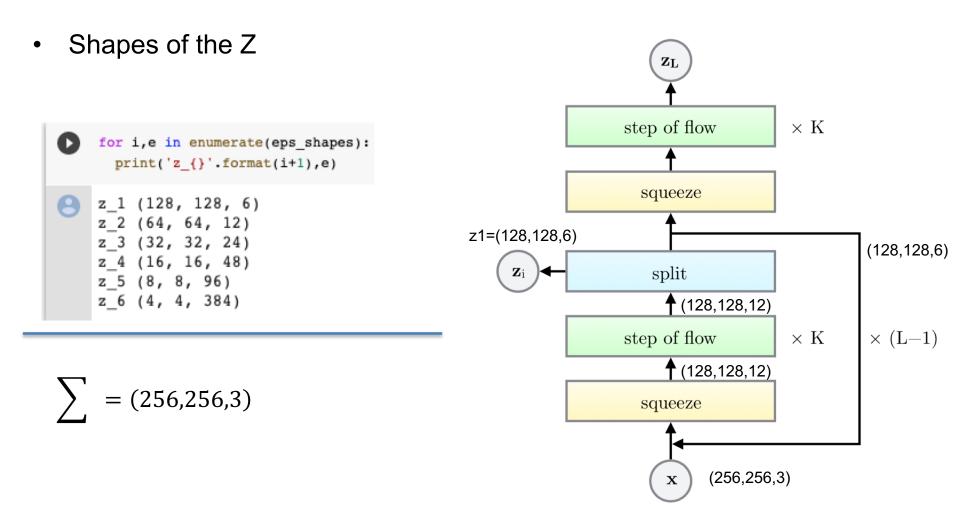
Actnorm. See Section 3.1.	$orall i, j: \mathbf{y}_{i,j} = \mathbf{s} \odot \mathbf{x}_{i,j} + \mathbf{b}$
Invertible 1×1 convolution. $\mathbf{W} : [c \times c].$ See Section 3.2.	$orall i, j: \mathbf{y}_{i,j} = \mathbf{W} \mathbf{x}_{i,j}$

(a) One step of our flow.

Multiscale Architecture

Squeeze operation: ٠ $\mathbf{z}_{\mathbf{L}}$ - s,s,c \rightarrow s/2, s/2, 4*c Reduces the spatial resolution step of flow $\times K$ Keeps the number of entries fixed squeeze Split operation z1=(128,128,6) (128, 128, 6) Splits input tensor in two halves split \mathbf{Z}_{i} - 50% of the variables only observe **(**128,128,12) one flow. These correspond to fine \times (L-1) step of flow $\times K$ grade details. **(**128,128,12) The rest is squeezed and thus squeeze describes finer details - L = 6 in paper (256, 256, 3) \mathbf{X}

Multiscale Architecture



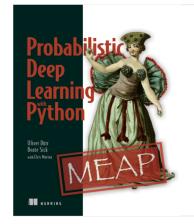
Demo

- Network has been trained on CelebA-HQ
 - 30000 (256x256x3) images of celebrities
 - Images have been aligned
- Sampling: draw 256*256*3 numbers from N(0,1)
 - Reduced Temperature draw from N(0,T*1)
- Interpolation
 - Blackboard
- Demo
 - Uses pretrained network
 - fun_with_glow

Further reading

Some interesting reads and talks

- Eric Jang
 - Blog: part1 (introduction) part2 (modern flows)
 - 2019 ICML Tutorial
- Priyank Jaini
 - Lecture Waterloo University CS 480_680 8/24/2019 lecture 23 (<u>slides</u> | <u>youtube</u>)
 - SOS paper ICML (<u>https://arxiv.org/abs/1905.02325</u>) <u>Talk</u>
- Arsenii Ashukha
 - Lecture at day 3 at <u>deepbayes.ru</u> summer school 2019 (<u>slides</u> | <u>video</u>)
- Papers (relevant to this talk)
 - Density estimation using Real NVP: <u>https://arxiv.org/abs/1605.08803</u>
 - Glow: Generative Flow with Invertible 1×1 Convolutions <u>https://arxiv.org/abs/1807.03039</u>



Coming soon

Thank you! Questions?