
Go with the flow
An introduction to normalizing flows

Oliver Dürr
Brown Bag Seminar HTWG 25/October/2019

1

These people are not 
real they are 

generated samples 
using NF



A bit of Motivation

• A the End of the lecture, you can create and understand something 
like:

• Look at the intermediate pictures, they look real.
• Persons no celebrities (not part of celebA-HQ used for training)

2



Outline

• Classification and motivate NF
– Density Estimation

– Generative Models

– Need for flexible distributions

• Change of Variables

• Using networks to control flows
– RealNVP

– If time Autoregressive Flows

• Glow for image data

• Demo code is currently in 
– https://github.com/tensorchiefs/dl_book/tree/master/chapter_06

3

https://github.com/tensorchiefs/dl_book/tree/master/chapter_06


Normalizing Flows 

• An novel method of parametric density estimation
– Example of parametric density estimation 2-D Gaussians with ! and Σ

4

#$(&', &))&)

&'

• Density Estimations are generative models…

Image from Priyank Jaini talk



Definition: Generative Model [cs231n]

Given training data, generate new samples from same distribution.

5

Several flavors: 
• Explicit density estimation: explicitly define and learn !"#$%&(()
• Implicit density estimation: learn model that can sample from !"#$%&(() w/o 

explicitly having a density



Generative models currently (2019) on vogue

7Image (modified) from: https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

VAEs and GANs have been covered in Datalab BBS 

Minmax

Approx.
Likelihood
(ELBO)

True,
Likelihood

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html


Generative models on vogue

8Image (modified) from: https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

VAEs and GANs have been covered in Datalab BBS 

Different Training, 
Same generative process

ZàX

Minmax

Approx.
Likelihood
(ELBO)

True,
Likelihood

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html


Theory: Name Some Distributions

• Gaussian
• Uniform
• Weibull
• Binomial
• Log-Normal

These are the distributions we have in our Toolbox.

Is the reality like this?

9



Reality: Data (1-D)

10

What distribution can you use?



Reality: Data (2-D)

11

x1

x2

What distribution can you use?



Reality: Data (256x256x3=196’608 Dimensions)

12

What distribution can you use?

3 data points sampled from the high dimensional distribution

This should be 196’608 dimensions
and not 3! 



Aproches for Density Estimation task, we want !"($):

• For easy cases fit normal “estimate mean and variance”
• Limited to simple distributions

• Mixtures of simple Distributions such as Gaussian
• Limited to fairly simple distribution

• Kernel Density estimation / Histograms
• Non-Parametric, low dimensions (non-sparse)

• Copulas (since yesterday)
• Limited to some 10 or 100 dimensions

• MCMC 
• Allows to sample from complicated distributions 

• GANs (only have an implicit estimation can sample from !($))
• VAE    (only have an approximation to !($))

• log ! ) = +, + ./0(1(2|))||!(2|))) the KL-Term is disregarded
• Normalizing Flows

13



Main Idea of Normalizing Flows

14

!"#$(x)

Data %~strange_function in ℝ$ Transformed function  ($~)(0,1)

!"(z)

Idea: learn an invertible transformation to simple function usually Gaussian )(0,1)
• Sampling from p(x): sample (∗ ∼ 1(() then transform it via !"(z*) 
• Density of x*: calculate z*= !"#$ %∗ and evaluate )((∗; 0,1)

pdf 1(()pdf p(%)



Main Idea of Normaliuing Flows

15

!"#$(x)

Data %~strange_function in ℝ( Transformed Data )$, )(~+(0,1)

!"(u)

pdf 0())pdf p(%)

x1

x2

Image Credit: RealNVP

Idea: learn an invertible transformation to simple function usually Gaussian +(0,1)
• Sampling from p(x): sample )∗ ∼ 0()) then transform it via !"(z*) 
• Density of x*: calculate z*= !"#$ %∗ and evaluate +()∗; 0,1)



Main Idea of Normalizing Flows

16

!"#$(x)

Data %~strange_function in ℝ$())*+

,$, ,., … , ,$())*+~0(0,1)
!"(u)

pdf 5(,)pdf p(%)

Idea: learn an invertible transformation to simple function usually Gaussian 0(0,1)
• Sampling from p(x): sample ,∗ ∼ 5(,) then transform it via !"(z*) 
• Density of x*: calculate z*= !"#$ %∗ and evaluate 0(,∗; 0,1)

%$, %., %$())*+~strange_function

With many correlations



Transformation of Variables
-- Some math

17



Simple Transformation

• Say you have z~"#$%&'((0,2)
• % . = .0

18

N = 10000
d = tfd.Uniform(low=0, high=2)
zs = d.sample(N)
x = zs**2

Try to come up with an answer, how is z distributed?



Try it

19

N = 10000
d = tfd.Uniform(low=0, high=2)
zs = d.sample(N) x = zs**2

hist zs hist zs**2



What happened?
Probability Mass needs to be conserved

20

Think of samples

Think of mass 
needs to be conserved



Annother View

21



1-D 

22

Here |!"
#$(&)
!& | since !"

#$(&)
!& can be 

negative.  
du and dx are positive by definition.



Definition in TFP

23https://github.com/tensorchiefs/dl_book/blob/master/chapter_06/nb_ch06_03.ipynb

https://github.com/tensorchiefs/dl_book/blob/master/chapter_06/nb_ch06_03.ipynb


Learning to flow

• How probable (well density) is a data point xi

• All Data points

• Affine linear

• https://github.com/tensorchiefs/dl_book/blob/master/chapter_06/nb_
ch06_03.ipynb

24

Tune the parameter(s) θ 
of the model M

so that (observed) data 
is most likely! 

https://github.com/tensorchiefs/dl_book/blob/master/chapter_06/nb_ch06_03.ipynb


Chaining

25

z0->z1->z2



Practical example

• Need non-linearity

• Geyser Data

26



Going to higher dimensions

27



Transformation in high dimensions

28



Requirements for the bijectors

A flow is composed of serval possible different f’s, the bijectors in TFP 
language. The following restrictions apply for them

• f needs for be invertible (strict requirement)

• Training 
– Fast calculation of !"#(%)
– Fast calculation of Jacobi-Determinant

• Application:
– Fast calculation of !(')

29



Flows with networks

30



Flows using networks

2 Main lines of research

• Guided by autoregressive (AR) models 
– All AR models like Wavenet can be understood as normaliuing flows

• Mask Autoregressive Flow (MAF)
• Inverse Mask Autoregressive Flow (IMAF)

• Using ‘handcrafted’ network based flows
– NICE (1410.8516 Dinh, Krueger, Bengio)
– RealNVP (1605.08803 Dinh, Dickstein, Bengio)
– Glow (https://arxiv.org/abs/1807.03039 Kingma, Dahriwal)

• Unifying framework (Triangular Maps)
– SOS paper ICML https://arxiv.org/abs/1905.02325

31

https://arxiv.org/abs/1605.08803
https://arxiv.org/abs/1807.03039
https://arxiv.org/abs/1905.02325


Requirement / Design considerations

• Fast calculation of ! " , !$%(')
• Crucial: We need fast calculation of Jacobi Matrix

– det ,-. /
,/0

$%

32

1!%(")
1"%

1!%(")
1"2

1!%(")
1"3

1!2(")
1"%

1!2(")
1"2

1!2(")
1"3

1!3(")
1"%

1!3(")
1"2

1!3(")
1"3

• Lin. Alg.: The determinant of triangular matrix is sum of diagonal terms (trace)

• Want triangular matrix ,-4(/),/5
⏞=
!
0

• è !% " = !% "%, "2, "3 , !: " = !% "%, … , ":, ":<%, ":<2,…
• Diagonal terms ,-5(/),/5

easy to be calculated (no network!)

• ,-5(/)
,/4

no restrictions, can be as complicated as hell (neural network)



Simple Solution

• Blackboard
– Netz
– Invertierbarkeit (pice of cake)
– Jacobi Determinante

33



Simple Solution

• Blackboard
– Netz
– Invertierbarkeit (pice of cake)
– Jacobi Determinante

34

1 0 0 0 0
0 1 0 0 0
# # exp '((*(,*,) 0 0
# # # exp ',(*(,*,) 0
# # # # exp '.(*(,*,)

j

i

#=don’t care 

/( = *(
/, = *,

1 .
1*(

1 .
1*,

1 .
1*.

1 .
1*3

1 .
1*4



Stack more Layers (Permutation)

• In RealNVP
– d is arbitrary and also the ordering 

• When stacking several coupling layers put fixed permutation of 
dimensions in between

• Fix permutation is invertible and det=1 (If a bijection)

35



Example

36



Glow for image data
--arXiv:1807.03039

44



Specialties of glow

• Use 1x1convolutions instead of Permutation

• Image Data
– Multiscale Architecture (also in RealNVP Paper)
– X and Z are now tensors (3 dimensional, shape w,h,c)
– Keep the w,h dimension work on the channel dimension
– The channel dimension get’s larger by squeeze operation (see below)
– As before (Affine coupling layer now with tensors)

45



Glow (Details of the affine coupling layer)

46

x has dimensions e.g.  (128x128x12)
xa has dimensions e.g. (128x128x6)
xb has dimensions e.g. (128x128x6)

NN is CNN, s is vector with length = 
depth of xa

See: Glow paper for further details 



Glow (new incredients)

• Additional actnorm (like a batchnorm for batch siue 1)
• Instead of a permutation 1x1 convolution is used (simple Matrix 

Multiplication)
• They stack 32 of those layers

47



Multiscale Architecture

• Squeeze operation:
– s,s,c à s/2, s/2, 4*c
– Reduces the spatial resolution
– Keeps the number of entries fixed

• Split operation
– Splits input tensor in two halves
– 50% of the variables only observe 

one flow. These correspond to fine 
grade details. 

– The rest is squeezed and thus 
describes finer details

– L = 6 in paper

48

(256,256,3)

(128,128,12)

(128,128,12)

z1=(128,128,6)
(128,128,6)



Multiscale Architecture

• Shapes of the Z

49

(256,256,3)

(128,128,12)

(128,128,12)

z1=(128,128,6)
(128,128,6)

! = 256,256,3



Demo

• Network has been trained on CelebA-HQ 
– 30000 (256x256x3) images of celebrities
– Images have been aligned

• Sampling: draw 256*256*3 numbers from N(0,1)
– Reduced Temperature draw from N(0,T*1)

• Interpolation
– Blackboard 

• Demo
– Uses pretrained network
– fun_with_glow

50



Further reading 

Some interesting reads and talks 

• Eric Jang
– Blog: part1 (introduction) part2 (modern flows)
– 2019 ICML Tutorial

• Priyank Jaini
– Lecture Waterloo University CS 480_680 8/24/2019 lecture 23 (slides | 

youtube)
– SOS paper ICML (https://arxiv.org/abs/1905.02325) Talk

• Arsenii Ashukha
– Lecture at day 3 at deepbayes.ru summer school 2019 (slides | video)

• Papers (relevant to this talk)
– Density estimation using Real NVP: https://arxiv.org/abs/1605.08803
– Glow: Generative Flow with Invertible 1×1 Convolutions 

https://arxiv.org/abs/1807.03039

51

Coming soon

https://blog.evjang.com/2018/01/nf1.html?m=1
https://blog.evjang.com/2018/01/nf2.html
https://slideslive.com/38917907/tutorial-on-normalizing-flows
https://cs.uwaterloo.ca/~ppoupart/teaching/cs480-spring19/slides/cs480-lecture23.pdf
https://www.youtube.com/watch?v=3KUvxIOJD0k&feature=youtu.be
https://arxiv.org/abs/1905.02325
https://youtube.videoken.com/embed/e9a-J0QALhI?tocitem=2
http://deepbayes.ru/
https://github.com/bayesgroup/deepbayes-2019/tree/master/lectures/day3
https://www.youtube.com/watch?v=v4gp1dMvWJo&list=PLe5rNUydzV9QHe8VDStpU0o8Yp63OecdW&index=15&t=0s
https://arxiv.org/abs/1605.08803
https://arxiv.org/abs/1807.03039
https://www.manning.com/books/probabilistic-deep-learning-with-python?a_aid=probabilistic_deep_learning&a_bid=78e55885


Thank you! Questions?

52


