#### Deep Learning For 3d Object Detection Brown Bag Session

. Hochschule Konstanz University of Applied Sciences

University of Applied Sciences Konstanz Institute for Optical Systems 14.12.2020 Dennis Grießer



H.

W

G

# Overview

- Motivation
- Depth reconstruction with stereo
- Depth reconstruction with multiple views
- 3d detection with multiple views



# Why 3d Deep Learning?

• Deep Learning on 2d data achieve impressive results in many tasks

Semantic

Segmentation

GRASS, CAT,

TREE. SKY

No objects, just pixels

Classification

+ Localization

CAT

Single Object

Object

Detection

DOG DOG CAT

Instance

Segmentation

DOG

Multiple Object

- Classification
- Segmentation
- Detection
- ! Large amount of data is required
- Increased availability of affordable 3d data aquisation devices





# Which representation?



Ahmed et al., A survey on Deep Learning Advances on Different 3D DataRepresentations (2019)

4



# Why Multi-view?



~16.000€





Elon Musk: "Anyone relying on lidar is doomed." Experts: Maybe not



#### 2020

5

# MultiSenseLakePerceptor

What does the system see?







# End-to-End approach



- Simple Model ٠ •
- Interpretability
- End-to-End Training
- Generalization



# Modular Approach



# **Central projection**





# Depth reconstruction







нт W 

# Rectification





# DispNet



#### DispNetCorrelation



Dosovitskiy et al., FlowNet: Learning Optical Flow with Convolutional Networks (2015)

Mayer et al., A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation (2016



# Multiple-view stereo

- It is not always possible to find correct correspondences
  - E.g. due to occlusion





# Multiple-view stereo

- Therefore, add more views
  - Can be used to verify correspondences
  - Can make reconstruction more robust to occlusion





# Multiple-view stereo

#### 1. Rectification of several cameras to a common plane

But rectification is complex for more views and large baselines

- 2. Plane sweep stereo
  - Select a reference view
  - Sweep some planes at different depths with respect to the reference camera



Collins, R.T. A space-sweep approach to true multi-image matching (CVPR), 1996 Gallup, D., Real-Time Plane-Sweeping Stereo with Multiple Sweeping Directions (CVPR), 2007





15

#### Plane sweep

- Properties:
  - Algorithm works with with any number of cameras
  - Rectification is not needed
- Define a family of depth planes:

 $\prod_m = [n_m^T - d_m]$ 

• Mapping from reference camera to camera k

$$H_{\prod_{m}, P_{k}} = K_{k} \left( R_{k} + \frac{t_{k} n_{m}}{d_{m}} \right) K_{ref}^{-1}$$
$$[x' y' w']^{T} = H_{\prod_{m}, P_{k}} [x y 1]^{T}$$
$$x_{k} = \frac{x'}{w'} \qquad y_{k} = \frac{y'}{w'}$$





#### Plane sweep

• Sweep planes at different depths





H T W

# Plane sweep for multiple views



sweep plane = 706 meter below reference camera

нт w

Red:

Green:

Blue:

# Plane sweep for multiple views



sweep plane = 790 meter below reference camera

Red:

Green:

Blue:

# Plane sweep for multiple views



sweep plane = 2168 meter below reference camera

нт w

Red:

Green:

Blue:

#### Plane sweep stereo

Algorithm:

- 1) Map each image to the reference image for each sweep plane with  $H_{\prod_{n}, P_{k}}^{-1}$
- 2) Compute the similarity between  $Patches_W$  of the reference image and each warped image. Use e.g. normalized cross correlation

$$NCC(W_{1}, W_{2}) = \frac{\sum_{x} (W_{1}(x) - mean_{1})(W_{2}(x) - mean_{2})}{\sqrt{\sum_{x} (W_{1}(x) - mean_{1})^{2} \sum_{x} (W_{2}(x) - mean_{2})^{2} i}}$$

3) Do 2) for each camera and sum up

$$M(u, v, \prod_{m}) = \sum_{k} NCC_{W}(I_{ref}, I_{k,m})$$

4) Select for each pixel the best depth plane

$$\prod_{m} (u, v) = \arg\max_{m} M(u, v, \prod_{m})$$



21

# Plane sweep example



Sum of scores

-2 

Danih (m)



# Plane sweep in difficult areas





# Pointcloud reconstruction



#### Depth map





Choose a set of reference cameras



# Deep plane sweep stereo (DPSNet)

- End-to-End training ٠
- Models the full plane sweep process ٠



. DPSNET: END-TO-END DEEP PLANE SWEEP STEREO (ICLR), 2019

25

Disparity map

IOS





- 59 convolutional layer with batch normalization, ReLU and Residual connections
- Output: (B,F,H,W) Tensor, with

B: minibatchsize F: number of features H: height W: width



- Spatial pyramid pooling to extract multi-scale features (He et al. 2015)
  - Average pooling (16 x 16, 8 x 8, 4 x 4, 2 x 2)
  - Upsample the hierachical contextual information to the same size as the original feature map
  - Concatenate all feature maps
  - Final convolutional layer to get for each input image 32 features maps



He et al., Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition (2015)



- Set the number of virtual planes perpendicular to the z-axis of the reference viewpoint and sample in the inverse-depth space:
  - L: total number of depth labels
  - $d_{min}$ : minimum scene depth

 $d_l = \frac{L \cdot d_{\min}}{l}, (l = 1, \dots, L)$ 



<sup>(2)</sup> Pair Image (3) Pair Image Reference Image (4) Vallbal (5) Va

input image refernce view

• Warp all features of the target view into reference view (same as in the classical plane sweep approach):

$$u_{ref} \sim K_{ref} \left[ R_k | t_k \right] \left[ \begin{pmatrix} K_k^{-1} u_k \end{pmatrix} d_l \\ 1 \end{bmatrix}$$

 $u_{ref}$ ,  $u_k$  homogenous coordinates of a pixel in reference view and target view k

• Use a spatial transformer network for the warping process (Jaderberg et al. 2015)



Jaderberg et al., Spatial Transformer Networks (2015)





### **Spatial Transformer Networks**



IOS

 Spatial transformer is a differentiable module, giving neural networks the ability to actively spatially transform feature maps



• Output Tensor after warping has shape of [B, 2F, D, H, W]

D: number of depth planes

- Use a series of 3d convolutions to learn the cost volume generation
  - Output tensor of shape [B, D, H, W]

- In the training step use only one paired image
- In the testing step use any number of paired images by averaging the cost volumes









Depth

- Regress continuous depth values
  - But argmin function is:
    - Discrete and unable to produce sub-pixel disparity
    - Not differentiable
- Therefore, compute a soft argmin which is differentiable

$$\hat{d} = \frac{L \times d_{min}}{\widetilde{l}}$$
  $\widetilde{l} = \sum_{l=1}^{L} l \times softmax(c_l)$ 

• Training loss:

$$L(\theta) = \sum_{x} |\hat{d}_{x}^{\theta} - d_{x}^{g}|_{H}$$

where H is SmoothL1 loss





# **DPSNet Results**

#### Input images







#### Pointcloud + Lidar pointcloud (red)





# 3d Object Detection

- Localize and classify objects in the scene
- Represent a detected object with a bounding box
  - Position (X, Y, Z)
  - Dimension (H, W, D)
- Axis aligned and non axis aligned bounding boxes





• Kitti dataset provide ~7000 annotated frames + synced lidar, gps, imu data

|                                     | Method                                                                                 | Setting        | Code                | Moderate                                             | Easy                                           | Hard                                                   | Runtime                                                             | Environment                                                                                                                                                 | Compare |
|-------------------------------------|----------------------------------------------------------------------------------------|----------------|---------------------|------------------------------------------------------|------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 1                                   | HRI-ADLab-HZ                                                                           |                |                     | 82.83 %                                              | 89.00 %                                        | 76.00 %                                                | 0.1 s                                                               | 1 core @ 2.5 Ghz (C/C++)                                                                                                                                    |         |
| 2                                   | SE-SSD                                                                                 |                |                     | 82.54 %                                              | 91.49 %                                        | 77.15 %                                                | 0.03 s                                                              | 1 core @ 2.5 Ghz (Python + C/C++)                                                                                                                           |         |
| 3                                   | EA-M-RCNN(BorderAtt)                                                                   |                | ]                   | 82.33 %                                              | 87.77 %                                        | 77.37 %                                                | 0.08 s                                                              | 1 core @ 2.5 Ghz (C/C++)                                                                                                                                    |         |
| 4                                   | HUAWEI Octopus                                                                         |                |                     | 82.13 %                                              | 88.26 %                                        | 77.41 %                                                | 0.1 s                                                               | 1 core @ 2.5 Ghz (C/C++)                                                                                                                                    |         |
| 5                                   | ADLAB                                                                                  |                | 1                   | 82.08 %                                              | 90.92 %                                        | 77.36 %                                                | 0.05 s                                                              | 1 core @ >3.5 Ghz (C/C++)                                                                                                                                   |         |
|                                     |                                                                                        |                |                     | •                                                    |                                                |                                                        |                                                                     |                                                                                                                                                             |         |
|                                     |                                                                                        |                |                     | •                                                    |                                                |                                                        |                                                                     | 1 0 ( / 1                                                                                                                                                   |         |
| 111                                 |                                                                                        |                |                     |                                                      | 0.45.96                                        | 0.62 %                                                 | 0.05 s                                                              | 1 core @ 25 Gbz /Puthon)                                                                                                                                    |         |
| 111                                 | <u>UM3D_TUM</u><br>MonoRUn                                                             |                |                     | 0.62 %                                               | 0.45 %                                         | 0.62 %                                                 | 0.05 s                                                              | 1 core @ 2.5 Ghz (Python)<br>GPU @ 2.5 Ghz (Python + C/C++)                                                                                                 |         |
| 111<br>112<br>113                   | UM3D_TUM<br>MonoRUn<br>Shift R-CNN (mono)                                              |                | code                | 0.62 %                                               | 0.45 %                                         | 0.62 %                                                 | 0.05 s<br>0.07 s                                                    | 1 core @ 2.5 Ghz (Python)<br>GPU @ 2.5 Ghz (Python + C/C++)<br>GPU @ 1.5 Ghz (Python)                                                                       |         |
| 111<br>112<br>113<br>A. Naid        | UM3D_TUM<br>MonoRUn<br>Shift R-CNN (mono)<br>en, V. Paunescu, G. Kim, B. Jeor          | n and M. Leord | 20de<br>eanu: Shift | 0.62 %<br>0.61 %<br>0.29 %<br>(R-CNN: Deep           | 0.45 %                                         | 0.62 %<br>0.48 %<br>0.31 %                             | 0.05 s<br>0.07 s<br>0.25 s                                          | 1 core @ 2.5 Ghz (Python)<br>GPU @ 2.5 Ghz (Python + C/C++)<br>GPU @ 1.5 Ghz (Python)<br>torm Geometric Constraints, ICP 2019.                              |         |
| 111<br>112<br>113<br>A. Naid<br>114 | UM3D_TUM<br>MonoRUn<br>Shift R-CNN (mono)<br>en, V. Paunesco, G. Kim, B. Jeor<br>PVNet | n and M. Leord | code                | 0.62 %<br>0.61 %<br>0.29 %<br>(R-CNN: Deep<br>0.00 % | 0.45 % ]<br>1.01 % 0.48 % 0.48 % 0.00 % 0.48 % | 0.62 %<br>0.48 %<br>0.31 %<br>> Object Detes<br>0.00 % | 0.05 s<br>0.07 s<br>0.25 s<br><del>clion With Closed</del><br>0,1 s | 1 core @ 2.5 Ghz (Python)<br>GPU @ 2.5 Ghz (Python + C/C++)<br>GPU @ 1.5 Ghz (Python)<br>tom Geometric Constraints, ICIP 2019.<br>1 core @ 2.5 Ghz (Python) |         |



## Recap 2d object detection

• Faster R-CNN for 2d object detection (Ren et al. 2015)

Sliding Region Proposal Network



Ren et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks (2015)





# 3d region proposal

- 1) Use a muti-view backbone like first part of DPSNet
- 2) Convolutional middle layers
- 3) 3d Region Proposal Network



Score [k, D, H, W]



нт W

- Assign labels to output volume
  - Labels are (X, Y, Z, L, W, H) of the bounding box
  - Compute 3d position for each pixel in the output volume

$$Z = D$$
  

$$X = -Z \frac{(x+c_x)}{f}$$
  

$$Y = -Z \frac{(y+c_y)}{f}$$

- Define anchor boxes for the objects
  - e.g. for cars



Coordinates [kx6, D, H, W]







- Compute intersection over union between ground truth boxes and anchor boxes
- Define a residual vector  $u^x$  with the positve anchor parameters  $(x^a, y^a, z^a, l^a, w^a, h^a)$ and the ground truth parameters  $(x^g, y^g, z^g, l^g, w^g, h^g)$  as

$$\begin{split} \Delta x &= \frac{x_c^g - x_c^a}{d^a}, \Delta y = \frac{y_c^g - y_c^a}{d^a}, \Delta z = \frac{z_c^g - z_c^a}{h^a}, \\ \Delta l &= \log(\frac{l^g}{l^a}), \Delta w = \log(\frac{w^g}{w^a}), \Delta h = \log(\frac{h^g}{h^a}), \\ \text{where } d^a &= \sqrt{(l^a)^2 + (w^a)^2} \end{split}$$

Loss function, same as VoxelNet (Zhou and Tuzel):

$$L = \alpha \frac{1}{N_{\text{pos}}} \sum_{i} L_{\text{cls}}(p_i^{\text{pos}}, 1) + \beta \frac{1}{N_{\text{neg}}} \sum_{j} L_{\text{cls}}(p_j^{\text{neg}}, 0) + \frac{1}{N_{\text{pos}}} \sum_{i} L_{\text{reg}}(\mathbf{u}_i, \mathbf{u}_i^*)$$

Regression loss: Smooth L1

Classification: Binary Cross-entropy

Positive, if IoU > 0,6, negative if IoU < 0,3 hou and Tuzel. VoxelNet: End-to-End Learning for Point Cloud Based 3D object Detection



# Qualitative results



Red: Network output Blue: Axis aligned ground truth



# References

- Many pictures and slides are from "Lecture 8.3 Multiple-view stereo, Trym Vegard Haavardsholm"
- Some slides are inspired by "KI & Autonomes Fahren: Sehen lernen um fahren zu lernen, Andreas Geiger" https://www.youtube.com/watch?v=HKsqhHuQqxE&t=212s
- Lecture Robotics 2, Uni Freiburg, Barbera Frank http://ais.informatik.uni-freiburg.de/teaching/ws10/robotics2/pdfs/rob2-10-camera-calibration.pdf
- Lecture 6 Computer Vision, HTWG Konstanz, Matthias O. Franz
- See the references in the footnote of the slides



# **Thanks for your attention!**

Dennis Grießer

Institute for Optical Systems

d.griesser@htwg-konstanz.de

