Markov Chain Monte Carlo (MCMC)

The missing chapter ;-)

Brown Bag Seminar

Background: Practical Bayesian Statistics

- Bayes
$-p(\theta \mid D)=\frac{p(D \mid \theta) p(\theta)}{\int p(D \mid \theta) p(\theta) d \theta}$
- Easy: unnormalized posterior (likelihood times prior)
- $p(D \mid \theta) p(\theta)$
- Methods to access $p(\theta \mid D)$

- Analytical (often impossible)
- Grid Approximation (very intensive)
- Quadratic Approximation (only valid for small dimensions)
- Variational Inference
- Markov Chain Monte Carlo

Background: Monte-Carlo Integration in Bayes (CPD)
See Daniel's Talk

Bayesian Model averaging BMA:

$-p(y \mid x, D)=\int p(y \mid x, \theta) \cdot p(\theta \mid D) d \theta$
$-p(y \mid x, D)=E_{\theta \sim p(\theta \mid D)}[p(y \mid x, \theta)]$
$-p(y \mid x, D) \approx \frac{1}{N} \sum_{\theta_{i} \sim p(\theta \mid D)} p\left(y \mid x, \theta_{i}\right)$
Samples is all you need

- Samples from $\theta_{i} \sim p(\theta \mid D)$

Have (Unormalized Posterior)

- $p(\theta \mid D) \propto p(D \mid \theta) p(\theta)$
- $p(D \mid \theta)$ Likelihood how prob. is D given θ
$p(y \mid x, D)$
- $p(\theta)$ Prior
- Easy to specify in a few lines of code

Monte-Carlo Integration General

$$
E_{\theta}[f(\theta)]=\int f(\theta) p(\theta) d \theta \approx \frac{1}{N} \sum_{\theta \sim p(\theta)} f(\theta)
$$

Need:

- Samples from $\theta \sim p(\theta)$

Have:

- Probability density $p(\theta)$ (up to constant)

MCMC:

- Is a method to draw samples θ from the (unnormalized) probability density $p(\theta)$

Markov Chain Monte Carlo

Metropolis and MCMC

- Metropolis: Simple version of Markov chain Monte Carlo (MCMC)
- Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller (1953)

Equation of State Calculations by Fast Computing Machines

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, and Augusta H. Teller, Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND
Edward Teller,* Department of Physics, University of Chicago, Chicago, Illinois
(Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of state for substances consisting of interacting individual molecules is described. The method consists of a modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared to the free volume equation of state and to a four-term virial coefficient expansion.

MANIAC:

Mathematical Analyzer, Numerical Integrator, and Computer

MANIAC: 1000 pounds 5 kilobytes of memory 70k multiplications/sec

Your laptop:
4-7 pounds
2-8 million kilobytes Billions of multiplications/sec

Metropolis and MCMC

- Metropolis: Simple version of Markov chain Monte Carlo (MCMC)
- Chain: Sequence of draws from distribution
- Markov chain: History doesn't matter, just where you are now
- Monte Carlo: Random simulation

Andrei Andreyevich Markov
(Ма́рков)
(1856-1922)

Texts in Statistical Science

Aichard McEreath

The Metropolis Archipelago

Contract: King Markov must visit each island in proportion to its population size.

Here's how he does it...

(1) Flip a coin to choose island on left or right. Call it the "proposal" island.
(1) Flip a coin to choose island on left or right. Call it the "proposal" island.

(2) Find population of proposal island.
(1) Flip a coin to choose island on left or right. Call it the "proposal" island.
(2) Find population of proposal island.

(3) Find population of current island.
(1) Flip a coin to choose island on left or right. Call it the "proposal" island.
(2) Find population of proposal island.
(3) Find population of current island.

(4) Move to proposal, with probability $=\frac{p_{5}}{p_{4}}$
(1) Flip a coin to choose island on left or right. Call it the "proposal" island.
(2) Find population of proposal island.
(3) Find population of current island.
(4) Move to proposal, with probability $=\frac{p_{5}}{p_{4}}$

(5) Repeat from (1)
(1) Flip a coin to choose island on left or right. Call it the "proposal" island.
(2) Find population of proposal island.
(3) Find population of current island.
(4) Move to proposal, with probability $=\frac{p_{5}}{p_{4}}$
(5) Repeat from (1)

This procedure ensures visiting each island in proportion to its population, in the long run.

Metropolis algorithm

```
num_weeks <- le5
positions <- rep(0,num_weeks)
current <- 10
for ( i in 1:num_weeks ) {
    # record current position
    positions[i] <- current
    # flip coin to generate proposal
    proposal <- current + sample( c(-1,1) , size=1 )
    # now make sure he loops around the archipelago
    if ( proposal < 1 ) proposal <- 10
    if ( proposal > 10 ) proposal <- 1
    # move?
    prob_move <- proposal/current
    current <- ifelse( runif(1) < prob_move , proposal , current )
}
```


Hello World to a Markov-Chain

\#\# R code 9.2
$\mathrm{N}=300$
$\operatorname{plot}(1: \mathrm{N}, \operatorname{positions[1:N]})$

\#\# R code 9.3
plot(table(positions))

Homework

* Change population of islands to abitrary distribution.
* Multiply the probabilities with a constant factor

Metropolis and MCMC

- Usual use is to draw samples from a posterior distribution
- "Islands": parameter values
- "Population size": proportional to posterior probability
- Works for any number of dimensions (parameters)
- Works for continuous as well as
 discrete parameters

Detailed Balance Condition (Why does MCMC Work)

- \quad Split $p_{j i}$ into $p_{j i}=T_{j i} \cdot p_{j i}^{a}$
- $T_{j i} \quad$ probability for a (tried) move
$-p_{j i}^{a}$ of accepting the move
- Stuff (\# Kings) which goes from i to j is
- Consider N kings moving in one time step
- Probability p_{i} to be in i in the first place
- $N_{i}=N \cdot p_{i}$
- Number of Kings moving from ito j
- $N_{j i}=N_{i} T_{j i} p_{j i}^{a}=N p_{i} T_{j i} p_{j i}^{a}$
- Probability $T_{j i}$ of a jump from i to j
- Probability $p_{j i}^{a}$ that the jump is accepted
- Detailed Balance Condition (Einfluß=Ausfluß)
$-N_{j i}=N_{i j}$
$-p_{i} T_{j i} p_{j i}^{a}=p_{j} T_{i j} p_{i j}^{a}$
- Valid if one king moves (ergodicity) over time

Metropolis Hasting acceptance criterium

- Detailed Balance reads
- $p_{i} T_{j i} p_{j i}^{a}=p_{j} T_{i j} p_{i j}^{a}$
- We can choose $T_{j i}$ and $p_{j i}^{a}$ so that p_{i} and p_{j} matches the desired distribution
- Acceptance criterium
$-p_{j i}^{a}=\min \left(1, \frac{p_{j} T_{i j}}{p_{i} T_{j i}}\right)$
$-p_{j i}^{a}=\min \left(1, \frac{p_{j}}{p_{i}}\right)$ if $T_{i j}=T_{j i}$
- Note just the ratio p_{i} / p_{j} enters
- Proof
- Let $p_{i} T_{j i}>p_{j} T_{i j} \quad$ w.l.o.g. (can be repeated other way around) both terms are not zero
- $p_{j i}^{a}=\left(\frac{p_{j} T_{i j}}{p_{i} T_{j i}}\right)$ and $p_{i j}^{a}=1$
- Insert into (${ }^{*}$)
- $p_{i} T_{j i} \frac{p_{j} T_{i j}}{p_{i} T_{j i}}=p_{j} T_{i j} \quad$ fits

MCMC for continuous

- See blackboard (E.g. sampling from Gaussian)

$$
\begin{aligned}
& \text { Ef }{ }^{p(\theta)} d^{i} v(\theta) \\
& p\left(\theta \mid \theta^{\prime}\right) \geq p\left(\theta^{\prime} \mid \theta\right) \\
& F^{p\left(\theta^{\prime}\right)} d^{p} V(\theta)
\end{aligned}
$$

Metropolis Hastings at Work

Desired Properties of MCMC

- Desired:
- High Acceptance Rate
- Fast Exploration of Probability Landscape

Metropolis gets stuck

- Problem get worse in high dimensions

MCMC Algorithms has problems for complex distributions

- Metropolis Hastings at work
- https://chi-feng.github.io/mcmc-demo/

HMC

One component of the HMC

Hybrid / Hamilton Monte Carlo (Algorithm, idea)

$\mathrm{q}=\theta \quad$ Position (e.g. in half-pipe)
$\mathrm{r}=m \cdot v$
Momentum (additional variable)

- Start at random position q_{i}
- Give the skater a random kick (momentum)
- Let her skate for some time t
- stop her at position q_{i+1}
q_{i} are samples from probability $\mathrm{p}(\theta)$
if potential energy (height of the ramp) is $U(\theta)=-\ln (p(\theta))$

WTF Why should this be samples from $\mathbf{p}(\theta)$?

A real world HMC simulation currently going on

An air particle (red) flies around in the air, like the skater it obeys the laws of classical physics.

After some time, get hit by another air molecule. It gets random momentum.

The momentum/velocity is independent of height (assume temperature is constant)

That's the HMC algorithm!

What does the samples look like, should be distributed as $(U(\theta)=m \cdot g \cdot h)$

$$
U(\theta) \propto-\ln (p(\theta)) \Rightarrow p(\theta) \propto e^{-U(\theta)}=e^{-m \cdot g \cdot \theta}
$$

That's correct: The number of partials or the pressure is distributed like:
pressure $(\theta)=\operatorname{pressure}(0) e^{-\frac{1}{k_{b} T} m \cdot g \cdot \theta}$

Hamilton Monte Carlo (Algorithm, idea)

$\mathrm{q}=\theta \quad$ Position (e.g. in half-pipe)
$\mathrm{r}=m \cdot v$
Momentum (additional variable)

- Start at random position q_{i}
- Give the skater a random impulse
- Let her skate for some time t (Equation of motion)
- stop her at position q_{i+1}
$q_{i+1} \quad$ samples from $p(\theta)$ if potential energy is $U(\theta)=-\ln (p(\theta))$

Equation of motion (during the scatting phase)

- $\frac{d q}{d t}=v=\frac{r}{m}$
- $\frac{d r}{d t}=-\frac{d U(\theta)}{d \theta}=\nabla U(\theta)$ Newton's $3^{\text {rd }}$ law (Force $=$ mass * acceleration)

Numerics bites

```
Algorithm 1: Hamiltonian Monte Carlo
    Input: Starting position \(\theta^{(1)}\) and step size \(\epsilon\)
    for \(t=1,2 \cdots\) do
        Resample momentum \(r\)
        \(r^{(t)} \sim \mathcal{N}(0, M)\)
        \(\left(\theta_{0}, r_{0}\right)=\left(\theta^{(t)}, r^{(t)}\right)\)
        Simulate discretization of Hamiltonian dynamics
        in Eq. (4):
        \(r_{0} \leftarrow r_{0}-\frac{\epsilon}{2} \nabla U\left(\theta_{0}\right)\)
        for \(i=1\) to \(m\) do
            \(\theta_{i} \leftarrow \theta_{i-1}+\epsilon M^{-1} r_{i-1}\)
            \(r_{i} \leftarrow r_{i-1}-\epsilon \nabla U\left(\theta_{i}\right)\)
        end
        \(r_{m} \leftarrow r_{m}-\frac{\epsilon}{2} \nabla U\left(\theta_{m}\right)\)
        \((\hat{\theta}, \hat{r})=\left(\theta_{m}, r_{m}\right)\)
        Metropolis-Hastings correction:
        \(u \sim\) Uniform[0, 1]
        \(\rho=e^{H(\hat{\theta}, \hat{r})-H\left(\theta^{(t)}, r^{(t)}\right)}\)
        if \(u<\min (1, \rho)\), then \(\theta^{(t+1)}=\hat{\theta}\)
    end
```

Integration / discretization can cause numerical problems.

Fix Detailed Balance (Still high acceptance rate)

HMC at work

- https://chi-feng.github.io/mcmc-demo/

The skater in the pool

MCMC in Action

Metropolis gets stuck

Facts about HMC

- Replace random moves with directed moves
- Makes a number of leapfrog steps, typically around 40
- This steps correspond to the movement of a physical particle
- Moves quickly in the space
- It fulfills detailed balance
- Needs gradient information

In Practice (see Ir_mcmc.ipynb) it's just another sampler

```
def unnormalized_posterior( }0,D)
    return unnormalized_post
#metropolis=tfp.mcmc.RandomWalkMetropolis(unnormalized_posterior,seed=42)
#metropolis=tfp.mcmc.NoUTurnSampler(unnormalized_posterior, step_size=100)
metropolis=tfp.mcmc.HamiltonianMonteCarlo(unnormalized_posterior,
    step_size=0.1,
    num_leapfrog_steps=40)
```


HMC esp. for people who had physics back a quarter of a century ago...

Recap (;-) Hamilton Mechanic

- Hamiltonian equation of motion (physics rulez p is momentum)

$$
\begin{aligned}
\frac{d q_{i}}{d t} & =\frac{\partial H}{\partial p_{i}} \\
\frac{d p_{i}}{d t} & =-\frac{\partial H}{\partial q_{i}}
\end{aligned}
$$

- Hamiltonian used here $H(q, p)=U(q)+K(p)=U(q)+\frac{p^{2}}{2 \cdot m}$

Recap (;-) Hamilton Mechanic

- Facts:
- Hamilton Dynamics is reversible
- For this Hamiltonian just change $p \rightarrow-\mathrm{p}$ (flying backwards)
- Energy stays constant
- If p and q follows equation of motion $H(p, q)$ is constant
- Volume stays constant (Liouville Theorem)

Recap (;-) Statistical Mechanics

- Need connection of $H(q, p)$ and probability* density $P(q, p)$
- Canonical Ensemble**
- System has constant temperature T
$-P(q, p)=\frac{1}{Z} e^{-H(q, p) / T}=\frac{1}{Z} e^{-U(q) / T} \cdot e^{\frac{\frac{p^{2}}{2 m}}{T}}=\frac{1}{Z} P(q) \cdot P(p)$
* Sorry to the stats guys for capital P ${ }^{* *}$ We set $k_{B}=1$

Does Algorithm sample from $P(q)$?

- Step 1 (Random Momentum, kick the skate boarder)
- Does not change distribution in q
- Step 2 (Hamilton Equation / skating)
- Moving from $(q, p) \rightarrow\left(q^{*}, p^{*}\right)$
- New proposal state $\left(q^{*},-p^{*}\right)$

Hamilton Mechanic is reversible and leaves volume in phase space constant. Detailed Balance:

$$
\begin{gathered}
P_{(q, p) \rightarrow\left(q^{*},-p^{*}\right)}^{A}=\min \left(1, \frac{P\left(q^{*},-p^{*}\right) T\left(q^{*},-p^{*} \mid q, p\right)}{P(q, p) T\left(q^{-},-p \mid q^{*}, p^{*}\right)}\right) \\
P_{(q, p) \rightarrow\left(q^{*},-p^{*}\right)}^{A}=\min \left(1, e^{H\left(q^{*},-p^{*}\right)-H(q, p)}\right) \\
\text { ensures that } \\
(q, p) \sim P(q, p) \\
\text { and so } \\
q \sim e^{U(q)}
\end{gathered}
$$

The U-Turn Problem

Figure 9.6

MCMC with Stan

Interfaces

ways to run Stan

Stan Interfaces

The Stan modeling language and statistical algorithms are exposed through interfaces into many popular computing environments.

- RStan (R)
- PyStan (Python)
- CmdStan (shell, command-line terminal)
- MatlabStan (MATLAB)
- Stan.jl (Julia)
- StataStan (Stata)
- MathematicaStan (Mathematica)

Programs written in the Stan modeling language are portable across interfaces.

Stan is NUTS

No U-Turn

- No U-Turn Sampler (NUTS2): Adaptive Hamiltonian Monte Carlo
- Implemented in Stan (rstan: mc-stan.org)
- Stan figures out gradient for you
- autodiff, back-propagation

Simple Linear Regression

From Daniel's talk

Linear regression

$$
p(y \mid x)=N\left(y, a \cdot x+b, \sigma^{2}=1\right)
$$

Priors (diagonal)

$$
a \sim N(0,1)
$$

$$
b \sim N(0,1)
$$

Stan (describing the model)

Stan (samples of $\mathrm{p}(\boldsymbol{\theta} \mid \boldsymbol{D})$)

We see 4 chains which mixes well. "Hairy Caterpillar"

Samples from the chains
We can also sample from posterior predictive, using the samples of a and b or via stan.

Further Reading

- Animations https://chi-feng.github.io/mcmc-demo/app.html
- HMC Overview
- Statistical Rethinking Chapter 8
- HMC Advanced
- Betancourt https://arxiv.org/abs/1701.02434
- Focus more on intuition (some things not so clear, in the second look)
- Talks:
- https://www.youtube.com/watch?v=jUSZboSq1zg
- https://www.youtube.com/watch?v=pHsulaPbNbY
- Radford Neal https://arxiv.org/abs/1701.02434
- Stochastic Gradient Hamiltonian Monte Carlo
- https://arxiv.org/abs/1402.4102

