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The missing chapter ;-)

Markov Chain Monte Carlo (MCMC) 

Brown Bag Seminar 



Background: Practical Bayesian Statistics

• Bayes

– 𝑝 𝜃 𝐷 = ! 𝐷 𝜃 !(#)
∫ ! 𝐷 𝜃 ! # &#

• Easy: unnormalized posterior (likelihood times prior)
– 𝑝 𝐷 𝜃 𝑝(𝜃)

• Methods to access 𝑝 𝜃 𝐷
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• Analytical (often impossible)
• Grid Approximation (very intensive)
• Quadratic Approximation (only valid for small dimensions)
• Variational Inference
• Markov Chain Monte Carlo 



Background: Monte-Carlo Integration in Bayes (CPD) 
See Daniel’s Talk

Bayesian Model averaging BMA: 
– 𝑝 𝑦 𝑥, 𝐷 = ∫ 𝑝 𝑦 𝑥, 𝜃 ⋅ 𝑝 𝜃 𝐷 𝑑𝜃
– 𝑝 𝑦 𝑥, 𝐷 = 𝐸#∼! 𝜃 𝐷 𝑝 𝑦 𝑥, 𝜃

– 𝑝 𝑦 𝑥, 𝐷 ≈ (
)
∑#!~!(#|,)𝑝(𝑦|𝑥, 𝜃-)

Samples is all you need 
• Samples from 𝜃- ∼ 𝑝 𝜃 𝐷

Have (Unormalized Posterior )
• 𝑝 𝜃 𝐷 ∝ 𝑝 𝐷 𝜃 𝑝 𝜃

• 𝑝 𝐷 𝜃 Likelihood how prob. is D given 𝜃
• 𝑝 𝜃 Prior
• Easy to specify in a few lines of code
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…

𝑝 𝑦 𝑥, 𝜃(

𝑝 𝑦 𝑥, 𝜃.

𝑝 𝑦 𝑥, 𝜃/

𝑝 𝑦 𝑥, 𝐷

1
𝑁
4



Monte-Carlo Integration General
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Need:
• Samples from 𝜃 ∼ 𝑝(𝜃)

Have:
• Probability density 𝑝(𝜃) (up to constant)

MCMC:
• Is a method to draw samples 𝜃 from the (unnormalized) probability density 𝑝(𝜃)

𝐸# 𝑓 𝜃 = ∫ 𝑓 𝜃 𝑝 𝜃 𝑑𝜃 ≈
1
𝑁

4
#∼!(#)

𝑓(𝜃)



Markov Chain Monte Carlo
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Metropolis and MCMC
• Metropolis: Simple version of Markov chain Monte 

Carlo (MCMC)
• Metropolis, Rosenbluth, Rosenbluth, Teller, and 

Teller (1953)

THE 0 R Y 0 F T RAe KEF FEe T SIN R A D I 0 L Y SIS 0 F W ATE R 1087 

instead, only water molecules with different amounts of 
excitation energy. These may follow any of three paths: 

(a) The excitation energy is lost without dissociation 
into radicals (by collision, or possibly radiation, as in 
aromatic hydrocarbons). 

(b) The molecules dissociate, but the resulting radi-
cals recombine without escaping from the liquid cage. 

(c) The molecules dissociate and escape from the 
cage. In this case we would not expect them to move 
more than a few molecular diameters through the dense 
medium before being thermalized. 

In accordance with the notation introduced by 
Burton, Magee, and Samuel,22 the molecules following 

22 Burton, Magee, and Samuel, J. Chern. Phys. 20, 760 (1952). 

THE JOURNAL OF CHEMICAL PHYSICS 

paths (a) and (b) can be designated H 20* and those 
following path (c) can be designated H 20t. It seems 
reasonable to assume for the purpose of these calcula-
tions that the ionized H 20 molecules will become the 
H 20t molecules, but this is not likely to be a complete 
correspondence. 

In conclusion we would like to emphasize that the 
qualitative result of this section is not critically de-
pendent on the exact values of the physical parameters 
used. However, this treatment is classical, and a correct 
treatment must be wave mechanical; therefore the 
result of this section cannot be taken as an a priori 
theoretical prediction. The success of the radical diffu-
sion model given above lends some plausibility to the 
occurrence of electron capture as described by this 
crude calculation. Further work is clearly needed. 
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Equation of State Calculations by Fast Computing Machines 
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A general method, suitable for fast computing machines, for investigatiflg such properties as equations of 
state for substances consisting of interacting individual molecules is described. The method consists of a 
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere 
system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared 
to the free volume equation of state and to a four-term virial coefficient expansion. 

I. INTRODUCTION 

T HE purpose of this paper is to describe a general 
method, suitable for fast electronic computing 

machines, of calculating the properties of any substance 
which may be considered as composed of interacting 
individual molecules. Classical statistics is assumed, 
only two-body forces are considered, and the potential 
field of a molecule is assumed spherically symmetric. 
These are the usual assumptions made in theories of 
liquids. Subject to the above assumptions, the method 
is not restricted to any range of temperature or density. 
This paper will also present results of a preliminary two-
dimensional calculation for the rigid-sphere system. 
Work on the two-dimensional case with a Lennard-
Jones potential is in progress and will be reported in a 
later paper. Also, the problem in three dimensions is 
being investigated. 

* Now at the Radiation Laboratory of the University of Cali-
fornia, Livermore, California. 

II. THE GENERAL METHOD FOR AN ARBITRARY 
POTENTIAL BETWEEN THE PARTICLES 

In order to reduce the problem to a feasible size for 
numerical work, we can, of course, consider only a finite 
number of particles. This number N may be as high as 
several hundred. Our system consists of a squaret con-
taining N particles. In order to minimize the surface 
effects we suppose the complete substance to be periodic, 
consisting of many such squares, each square contain-
ing N particles in the same configuration. Thus we 
define dAB, the minimum distance between particles A 
and B, as the shortest distance between A and any of 
the particles B, of which there is one in each of the 
squares which comprise the complete substance. If we 
have a potential which falls off rapidly with distance, 
there will be at most one of the distances AB which 
can make a substantial contribution; hence we need 
consider only the minimum distance dAB. 

t We will use two-dimensional nomenclature here since it 
is easier to visualize. The extension to three dimensions is obvious. 
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MANIAC:
Mathematical Analyzer, Numerical Integrator, and Computer

MANIAC:
1000 pounds
5 kilobytes of memory
70k multiplications/sec

Your laptop:
4–7 pounds
2–8 million kilobytes
Billions of multiplications/sec
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Metropolis and MCMC

• Metropolis: Simple version of Markov 
chain Monte Carlo (MCMC)

• Chain: Sequence of draws from 
distribution

• Markov chain: History doesn’t matter, 
just where you are now

• Monte Carlo: Random simulation
Andrei Andreyevich Markov

(Ма́рков)
(1856–1922)
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King Markov
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The Metropolis Archipelago
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Contract: King Markov must visit each island 
in proportion to its population size.

Here’s how he does it...
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(1) Flip a coin to choose island on left or right.
Call it the “proposal” island.

1
2

1
2
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(2) Find population of proposal island.

(1) Flip a coin to choose island on left or right.
Call it the “proposal” island.

proposal
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(2) Find population of proposal island.

1 2 3 4 5 6 7
p5

(1) Flip a coin to choose island on left or right.
Call it the “proposal” island.

(3) Find population of current island.

p4

proposal
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(2) Find population of proposal island.

1 2 3 4 5 6 7
p5

(1) Flip a coin to choose island on left or right.
Call it the “proposal” island.

(3) Find population of current island.

p4

(4) Move to proposal, with probability = p5

p4

proposal
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(2) Find population of proposal island.

1 2 3 4 5 6 7

(1) Flip a coin to choose island on left or right.
Call it the “proposal” island.

(3) Find population of current island.
(4) Move to proposal, with probability = p5

p4

(5) Repeat from (1)
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(2) Find population of proposal island.

1 2 3 4 5 6 7

(1) Flip a coin to choose island on left or right.
Call it the “proposal” island.

(3) Find population of current island.
(4) Move to proposal, with probability = p5

p4(5) Repeat from (1)

This procedure ensures visiting each island in 
proportion to its population, in the long run.
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Metropolis algorithm
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	�
 *G UIF DPJO UVSOT VQ IFBET UIF ,JOH DPOTJEFST NPWJOH UP UIF BEKBDFOU JTMBOE DMPDL�
XJTF BSPVOE UIF BSDIJQFMBHP� *G UIF DPJO UVSOT VQ UBJMT IF DPOTJEFST JOTUFBE NPWJOH
DPVOUFSDMPDLXJTF� $BMM UIF JTMBOE UIF DPJO OPNJOBUFT UIF QSPQPTBM JTMBOE�

	�
 /PX UP TFF XIFUIFS PS OPU IF NPWFT UP UIF QSPQPTBM JTMBOE ,JOH .BSLPW DPVOUT
PVU B OVNCFS PG TFBTIFMMT FRVBM UP UIF SFMBUJWF QPQVMBUJPO TJ[F PG UIF QSPQPTBM JT�
MBOE� 4P GPS FYBNQMF JG UIF QSPQPTBM JTMBOE JT OVNCFS � UIFO IF DPVOUT PVU �
TFBTIFMMT� ćFO IF BMTP DPVOUT PVU B OVNCFS PG TUPOFT FRVBM UP UIF SFMBUJWF QPQVMB�
UJPO PG UIF DVSSFOU JTMBOE� 4P GPS FYBNQMF JG UIF DVSSFOU JTMBOE JT OVNCFS �� UIFO
,JOH .BSLPW FOET VQ IPMEJOH �� TUPOFT JO BEEJUJPO UP UIF � TFBTIFMMT�

	�
 8IFO UIFSF BSF NPSF TFBTIFMMT UIBO TUPOFT ,JOH .BSLPW BMXBZT NPWFT UP UIF QSP�
QPTBM JTMBOE� #VU JG UIFSF BSF GFXFS TIFMMT UIBO TUPOFT IF EJTDBSET B OVNCFS PG TUPOFT
FRVBM UP UIF OVNCFS PG TIFMMT� 4P GPS FYBNQMF JG UIFSF BSF � TIFMMT BOE � TUPOFT IF
FOET VQ XJUI � TIFMMT BOE � − � = � TUPOFT� ćFO IF QMBDFT UIF TIFMMT BOE UIF SF�
NBJOJOH TUPOFT JO B CBH� )F SFBDIFT JO BOE SBOEPNMZ QVMMT PVU POF PCKFDU� *G JU JT B
TIFMM IF NPWFT UP UIF QSPQPTBM JTMBOE� 0UIFSXJTF IF TUBZT QVU BOPUIFS XFFL� "T B
SFTVMU UIF QSPCBCJMJUZ UIBU IF NPWFT JT FRVBM UP UIF OVNCFS PG TIFMMT EJWJEFE CZ UIF
PSJHJOBM OVNCFS PG TUPOFT�
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PUIFS UJNFT CPVODJOH BSPVOE XJUIPVU BQQBSFOU QBUUFSO� #VU JO UIF MPOH SVO UIJT QSPDFEVSF
HVBSBOUFFT UIBU UIF LJOH XJMM CF GPVOE PO FBDI JTMBOE JO QSPQPSUJPO UP JUT QPQVMBUJPO TJ[F�

:PV DBO QSPWF UIJT UP ZPVSTFMG CZ TJNVMBUJOH ,JOH .BSLPW�T KPVSOFZ� )FSF�T B TIPSU QJFDF
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*�WF BEEFE DPNNFOUT UP UIJT DPEF UP IFMQ ZPV EFDJQIFS JU� ćF ĕSTU UISFF MJOFT KVTU EFĕOF
UIF OVNCFS PG XFFLT UP TJNVMBUF BO FNQUZ IJTUPSZ WFDUPS BOE B TUBSUJOH JTMBOE QPTJUJPO 	UIF
CJHHFTU JTMBOE OVNCFS ��
� ćFO UIF !*- MPPQ TUFQT UISPVHI UIFXFFLT� &BDIXFFL JU SFDPSET
UIF LJOH�T DVSSFOU QPTJUJPO� ćFO JU TJNVMBUFT B DPJO ĘJQ UP OPNJOBUF B QSPQPTBM JTMBOE� ćF
POMZ USJDL IFSF MJFT JO NBLJOH TVSF UIBU B QSPQPTBM PG i��w MPPQT BSPVOE UP JTMBOE � BOE B



Hello World to a Markov-Chain
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## R code 9.2
N = 300
plot( 1:N , positions[1:N])

## R code 9.3
plot( table( positions ) )



* Change population of islands to abitrary distribution.

* Multiply the probabilities with a constant factor

21

Homework
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Metropolis and MCMC

• Usual use is to draw samples from a 
posterior distribution
• “Islands”: parameter values
• “Population size”: proportional to 

posterior probability
• Works for any number of dimensions 

(parameters)
• Works for continuous as well as 

discrete parameters



Detailed Balance Condition (Why does MCMC Work)

• Split	𝑝!" into	𝑝!" = 𝑇!" ⋅ 𝑝!"#

– 𝑇!" probability for a (tried) move 
– 𝑝!"# of accepting the move

• Stuff (# Kings) which goes from 𝑖 to 𝑗 is
– Consider N kings moving in one time step
– Probability 𝑝" to be in 𝑖 in the first place

• 𝑁! = 𝑁 ⋅ 𝑝!
– Number of Kings moving from i to j

• 𝑁"! = 𝑁! 𝑇"! 𝑝"!# = 𝑁𝑝! 𝑇"! 𝑝"!#

• Probability 𝑇"! of a jump from 𝑖 to 𝑗
• Probability 𝑝"!# that the jump is accepted

• Detailed Balance Condition (Einfluß=Ausfluß)
– 𝑁!" = 𝑁"!
– 𝑝" 𝑇!" 𝑝!"# = 𝑝! 𝑇"! 𝑝"!#

– Valid if one king moves (ergodicity) over time
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Metropolis Hasting acceptance criterium

• Detailed Balance reads
– 𝑝! 𝑇"! 𝑝"!# = 𝑝" 𝑇!" 𝑝!"#

• We can choose 𝑇!" and	𝑝!"# so	that	𝑝" and	𝑝! matches	the	desired	distribution

• Acceptance criterium

– 𝑝"!# = min 1, $! %"!$" %!"

– 𝑝"!# = min 1, $!$" if 𝑇!" = 𝑇"!
– Note just the ratio 𝑝!/𝑝" enters

– Proof
• Let 𝑝" 𝑇#" > 𝑝# 𝑇"# w.l.o.g. (can be repeated other way around) both terms are not 

zero

• 𝑝#"$ =
%! &"!
%" &!"

and	𝑝"#$=1

• Insert	into	(*)
• 𝑝" 𝑇#"

%! &"!
%" &!"

= 𝑝# 𝑇"# fits
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MCMC for continuous

• See blackboard (E.g. sampling from Gaussian)
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Metropolis Hastings at Work

28https://chi-feng.github.io/mcmc-demo https://chi-feng.github.io/mcmc-demo/app.html?algorithm=RandomWalkMH&target=standard

https://chi-feng.github.io/mcmc-demo
https://chi-feng.github.io/mcmc-demo/app.html?algorithm=RandomWalkMH&target=standard


Desired Properties of MCMC 

• Desired:
– High Acceptance Rate
– Fast Exploration of Probability Landscape

• Problem get worse in high dimensions
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MCMC Algorithms has problems for complex distributions

• Metropolis Hastings at work
– https://chi-feng.github.io/mcmc-demo/
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https://chi-feng.github.io/mcmc-demo/


HMC
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One component of the HMC

33https://elevanth.org/blog/2017/11/28/build-a-better-markov-chain/



Hybrid / Hamilton Monte Carlo (Algorithm, idea)

q = 𝜃 Position (e.g. in half-pipe) 
r = 𝑚 ⋅ 𝑣 Momentum (additional variable)

• Start at random position 𝑞-
• Give the skater a random kick (momentum)
• Let her skate for some time 𝑡
• stop her at position 𝑞-0(

𝑞" are samples from probability p(𝜃)
if potential energy (height of the ramp) is 𝑈 𝜃 = −ln(𝑝 𝜃 )

WTF Why should this be samples from p(𝜃)?
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A real world HMC simulation currently going on
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An air particle (red) flies around in the air, like the 
skater it obeys the laws of classical physics.

After some time, get hit by another air molecule. It 
gets random momentum.

The momentum/velocity is independent of height 
(assume temperature is constant)

That’s the HMC algorithm!

What does the samples look like, should be distributed as (𝑈 𝜃 = 𝑚 ⋅ 𝑔 ⋅ ℎ)

𝑈 𝜃 ∝ − ln 𝑝 𝜃 ⇒ 𝑝 𝜃 ∝ 𝑒12 # = 𝑒13⋅5⋅#

That’s correct: The number of partials or the pressure is distributed like:

pressure 𝜃 = pressure(0) 𝑒
1 '
()*

3⋅5⋅#



Hamilton Monte Carlo (Algorithm, idea)

q = 𝜃 Position (e.g. in half-pipe) 
r = 𝑚 ⋅ 𝑣 Momentum (additional variable)

• Start at random position 𝑞-
• Give the skater a random impulse
• Let her skate for some time 𝑡 (Equation of motion)
• stop her at position 𝑞-0(

𝑞"78 samples from 𝑝(𝜃) if potential energy is 𝑈 𝜃 = −ln(𝑝 𝜃 )

Equation of motion (during the scatting phase)

• 9:
9;
= 𝑣 = <

=

• 9<
9;
= − 9> ?

9?
= ∇𝑈(𝜃) Newton’s 3rd law (Force = mass * acceleration)
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Numerics bites

37

Integration / discretization 
can cause numerical 
problems.

Fix Detailed Balance
(Still high acceptance rate)

Radford Neal https://arxiv.org/abs/1701.02434

https://arxiv.org/abs/1701.02434


HMC at work

– https://chi-feng.github.io/mcmc-demo/
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The skater in the pool 
(between two kicks)

https://chi-feng.github.io/mcmc-demo/


MCMC in Action
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Only one rejection

Metropolis

HMC



Facts about HMC

• Replace random moves with directed moves
– Makes a number of leapfrog steps, typically around 40
– This steps correspond to the movement of a physical particle

• Moves quickly in the space
• It fulfills detailed balance
• Needs gradient information

In Practice (see lr_mcmc.ipynb) it’s just another sampler

def unnormalized_posterior(𝜃, 𝐷):
…
return unnormalized_post

#metropolis=tfp.mcmc.RandomWalkMetropolis(unnormalized_posterior,seed=42)
#metropolis=tfp.mcmc.NoUTurnSampler(unnormalized_posterior, step_size=100)
metropolis=tfp.mcmc.HamiltonianMonteCarlo(unnormalized_posterior, 

step_size=0.1, 
num_leapfrog_steps=40)

40Code at: https://github.com/oduerr/ml-playground/blob/master/python/TFP_Bayes/lr_mcmc.ipynb

https://github.com/oduerr/ml-playground/blob/master/python/TFP_Bayes/lr_mcmc.ipynb


HMC esp. for people who had 
physics back a quarter of a 
century ago…

41https://www.youtube.com/watch?v=DanoR0MXNrM



Recap (;-) Hamilton Mechanic 

• Hamiltonian equation of motion (physics rulez p is momentum)

42

• Hamiltonian used here 𝐻 𝑞, 𝑝 = 𝑈 𝑞 + 𝐾 𝑝 = 𝑈 𝑞 + C$

D⋅=



Recap (;-) Hamilton Mechanic 
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• Facts:
– Hamilton Dynamics is reversible 

• For this Hamiltonian just change pà-p (flying backwards)
– Energy stays constant

• If p and q follows equation of motion 𝐻 𝑝, 𝑞 is constant
– Volume stays constant (Liouville Theorem)



Recap (;-) Statistical Mechanics

• Need connection of 𝐻 𝑞, 𝑝 and probability* density 𝑃(𝑞, 𝑝)

• Canonical Ensemble** 
– System has constant temperature T 

– 𝑃 𝑞, 𝑝 = (
6
𝑒17(8,!)/; = (

6
𝑒12(8)/; ⋅ 𝑒1

+,
,-
* = (

6
𝑃 𝑞 ⋅ 𝑃 𝑝

44* Sorry to the stats guys for capital P  **We set 𝑘< = 1



Does Algorithm sample from 𝑷(𝒒)?

• Step 1 (Random Momentum, kick the skate boarder)
– Does not change distribution in q 

• Step 2 (Hamilton Equation / skating)
– Moving from 𝑞, 𝑝 → (𝑞∗, 𝑝∗)
– New proposal state (𝑞∗, −𝑝∗)
Hamilton Mechanic is reversible and leaves volume in phase space 
constant. Detailed Balance:

𝑃 &,$ →(&∗,*$∗)
, =min 1,

𝑃 𝑞∗, −𝑝∗ 𝑇(𝑞∗, −𝑝∗|𝑞, 𝑝)
𝑃 𝑞, 𝑝 𝑇(𝑞 ,−𝑝|𝑞∗, 𝑝∗)

𝑃 &,$ →(&∗,*$∗)
, = min 1, 𝑒. &∗,*$∗ *. & ,$

ensures that
𝑞, 𝑝 ∼ 𝑃(𝑞, 𝑝)

and so
𝑞 ∼ 𝑒/(&)

45



46Figure 9.6
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2D Gaussian, L = 11
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2D Gaussian, L = 28
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'ĶĴłĿĲ Ƒ�Ǝ� ).$ USBKFDUPSJFT� 5PQ�MFę� 8JUI UIF SJHIU DPNCJOBUJPO PG
MFBQGSPH TUFQT BOE TUFQ TJ[F UIF JOEJWJEVBM QBUIT KVNQ BSPVOE BOE QSPEVDF
IJHIMZ JOEFQFOEFOU TBNQMFT GSPN UIF QPTUFSJPS� 5PQ�SJHIU� 8JUI UIF XSPOH
DPNCJOBUJPO TFRVFOUJBM TBNQMFT DBO FOE VQ WFSZ DMPTF UP POF BOPUIFS� ćF
DIBJO JO UIF UPQ�SJHIU XJMM TUJMM XPSL� *U�MM KVTU CF NVDI MFTT FďDJFOU� #PUUPN�
MFę� ).$ SFBMMZ TIJOFT XIFO UIF QPTUFSJPS DPOUBJOT IJHI DPSSFMBUJPOT BT
IFSF� #PUUPN�SJHIU� �� TBNQMFT GSPN UIF TBNF IJHI DPSSFMBUJPO QPTUFSJPS
TIPXJOH POMZ POF SFKFDUFE TBNQMF 	UIF PQFO QPJOU
�

SFUVSO B WFDUPS PG UIF TBNF MFOHUI� 4P UIBU UIFTF � BOE "-��Ǿ� GVODUJPOT NBLF NPSF TFOTF MFU�T
QSFTFOU UIFN ĕSTU CVJMU DVTUPN GPS UIF �% (BVTTJBO FYBNQMF� ćF � GVODUJPO KVTU FYQSFTTFT UIF MPH�
QPTUFSJPS BT TUBUFE CFGPSF JO UIF NBJO UFYU�

∑

J
MPH Q(ZJ|µZ, �) +

∑

J
MPH Q(YJ|µY, �) + MPH Q(µZ|�, �.�) + MPH Q(µY, �, �.�)

4P JU�T KVTU GPVS DBMMT UP �)*-( SFBMMZ�

The U-Turn Problem



MCMC with Stan
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Stanislaw Ulam (1909–1984)

mc-stan.org



49

Stan is NUTS

• No U-Turn Sampler (NUTS2): Adaptive 
Hamiltonian Monte Carlo

• Implemented in Stan (rstan: mc-stan.org)
• Stan figures out gradient for you

• autodiff, back-propagation

Formula Stan
model

C++
model

Reusable
Sampler



Simple Linear Regression
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From Daniel’s talk

Linear regression

𝑝 𝑦 𝑥 = 𝑁(𝑦, 𝑎 ⋅ 𝑥 + 𝑏, 𝜎. = 1)

Priors (diagonal)
𝑎 ∼ 𝑁 0,1
𝑏 ~ 𝑁(0,1)

Stan (describing the model)



Stan (samples of p(𝜽|𝑫))
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samples = sampling(model, data=list(N=N,x=x, y=y))
samples

mean se_mean sd 2.5%    25%    50%    75%  97.5% n_eff Rhat
a      2.62    0.00 0.31   2.02   2.42   2.62   2.83   3.22  4117    1
b     -1.39    0.01 0.44  -2.26  -1.69  -1.39  -1.09  -0.50  3988    1
lp__ -34.59    0.02 0.97 -37.28 -34.95 -34.27 -33.91 -33.66  1831    1

traceplot(samples)

We see 4 chains which mixes well.
”Hairy Caterpillar”  a b

Samples from the chains

We can also sample from posterior predictive, using the 
samples of a and b or via stan.



Further Reading

• Animations https://chi-feng.github.io/mcmc-demo/app.html

• HMC Overview
– Statistical Rethinking Chapter 8

• HMC Advanced
– Betancourt https://arxiv.org/abs/1701.02434

• Focus more on intuition (some things not so clear, in the second look)
• Talks:

– https://www.youtube.com/watch?v=jUSZboSq1zg
– https://www.youtube.com/watch?v=pHsuIaPbNbY

– Radford Neal https://arxiv.org/abs/1701.02434
• Stochastic Gradient Hamiltonian Monte Carlo 

– https://arxiv.org/abs/1402.4102
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https://chi-feng.github.io/mcmc-demo/app.html
https://arxiv.org/abs/1701.02434
https://www.youtube.com/watch?v=jUSZboSq1zg
https://www.youtube.com/watch?v=pHsuIaPbNbY
https://arxiv.org/abs/1701.02434

