
Bayes for dummies 2
Transformation Models for Flexible Posteriors in Variational Bayes
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Goal:
Get a fitted Bayesian model 
with flexible posteriors for 
the model parameters

SGD

Loss: -ELBO 

BF-VI

Oliver Dürr,  Stefan Hörtling, Ivonne Kovylov, Daniel Dold, Beate Sick

data, model-structure

Recent work:
- arXiv:2106.00528 (1-D and Mean Field Version) 
- https://opus.htwg-konstanz.de/frontdoor/index/index/docId/2974 (Semi Structured)
- Manuscript in preparation (arXiv next few days)

https://opus.htwg-konstanz.de/frontdoor/index/index/docId/2974


Motivation: OOD Uncertainty / Extrapolation 

3Image Credit NeurIPS 2018 Workshop on Causal Learning

Does DL see the Cow?

https://sites.google.com/view/nips2018causallearning/home


Motivation: OOD Uncertainty / Extrapolation 
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Deep Learning does not state uncertainty in OOD Situations
Bayesian Deep Learning allows to model (epistemic) uncertainty

Image Credit NeurIPS 2018 Workshop on Causal Learning

DL does not even say “I don’t know”

https://sites.google.com/view/nips2018causallearning/home


Bayesian Neural Networks to the rescue
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https://adamcobb.github.io/journal/bnn.html



Bayesian models (Besides Bayesian NN)

• Include prior knowledge
• Example Corona Modeling

– https://arxiv.org/abs/2004.01105 (Science)
Priseman Group
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https://arxiv.org/abs/2004.01105
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Bayesian Model Definition

𝑝 𝑤 𝐷 =
𝑝 𝐷 𝑤 𝑝(𝑤)

𝑝 𝐷
=

𝑝 𝐷 𝑤 𝑝(𝑤)
∫ 𝑝 𝐷 𝑤 𝑝(𝑤)𝑑𝑤

∼ 𝑝 𝐷 𝑤 𝑝(𝑤)

posterior
likelihood

pior

normalizing denominator
this is the most difficult part!

𝑝 𝐷 𝑤 #D=(x,y), T is Batch 𝑝(𝑤)

Many probabilistic programming languages to define model: Stan, pyro, numpyro, TF-probability,…  



Model Definition, examples
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Tell the story, how the data is generated.

Stan model

Engines takes Model

Samples from posterior for sigma

and produces Samples from 
posterior



Computing the posterior

• Analytical 
– Impossible for interesting problems 

• MCMC-Sampling (gold standard)
– Draw samples from the posterior
– Limitations

• Larger number of Data Points (no mini-batch) 𝑝(w│𝐷) has the “Daten an der 
Backe”

• Large models sizes (Deep Learning is out of scope) 

• Approximations
– Laplace
– Deep Learning Hacks*

• MC-Dropout
• (Multi-)SWAG
• Ensembling

– Variational Inference ß Focus here
• There is an automatic version, Black Box Variation Inference

9*These are non-Bayesian but still works for the output “function space”

No Blackbox 
(i.e. does not work with code)



Background: Variational Inference
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The principle of VI

• Replace 𝑝 𝜃 𝐷 with 𝑞$(𝜃) (Variational Ansatz)
• Replace sampling in MCMC with fitting / optimization 
• Typically, independent Gaussian for each weight

– 𝑝 𝑎 𝐷 = 𝑞!,#(𝑎)
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Loss in VI: Minimizing KL-Divergence

• We want 𝑞$(𝜃) close to the unkown 𝑝 𝜃 𝐷
• We start with KL(q||p) (direction chosen to make life easy)
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• A bit of math does the magic
• ELBO Evidence Lower Bound is 

maximized (minimize –ELBO)



Be more explicit about step two
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We have to start with way, q first

no dependence on 𝜃 and ∫ 𝑞$ 𝜃 𝑑𝜃 = 1

We need to minimize 



Be more explicit about step two (cont’d) 
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A miracle the unknown posterior 𝑝 𝜃 𝐷 is gone.



Intuition of the optimization
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• Distance of prior to variational approximation (regularization)

• NLL  of trainings data D, now averaged over different weights

Tradeoff of good fit (low NLL) and regularization small KL to prior.

* The KL is ∝ Number of weights
* The NLL terms is ∝ number of datapoints
The more Data the less important the priors.



Fitting the variational approximation

• Same tricks as in the VAE
– KL Divergence can often/sometime be calculated analytically
– Instead of calculating 𝐸%~'_$ for many sample use one (unbiased estimate)
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Sam
pli

ng

Machine Learner

𝐾𝐿[𝑞!(𝜃)| 𝑝 𝜃 = ∫ 𝑞! 𝜃 log
𝑞! 𝜃
𝑝 𝜃 𝑑𝜃 = 𝐸"~$![log(

𝑞! 𝜃
𝑝 𝜃 )] 𝐸!~#%[log 𝑝(𝐷|𝜃)] = ∫ log𝑝(𝐷|𝜃) 𝑞$ 𝜃 𝑑𝜃

𝐸%~'% 𝑓(𝜃) ≈
1
𝑆
3
%&~'%

𝑓 𝜃)



Black Box VI (https://arxiv.org/abs/1401.0118)

def nelbo(𝜆): 
𝜃3 <- Samples 𝑖 = 1, … 𝑆 from variational distribution
NLL <- mean(-log(p(D|𝜃3)) 
KL  <- mean(log(q$(𝜃3))- mean(log(p(𝜃3))

#SGD (Adam and RMSProp… also possible)

𝜆 ← 𝜆 − 𝜂 ⋅ 𝑔𝑟𝑎𝑑(𝑛𝑒𝑙𝑏𝑜) #Use autograd to calculate gradient 
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NLL𝐾𝐿 = 𝐸%~'%[log(
𝑞$ 𝜃
𝑝 𝜃

)]

Just provide the functions p(D|𝜃*), p(𝜃*), and q(𝜆|𝜃*) and autograd does the rest 



Fitting the variational approximation
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https://www.youtube.com/watch?v=MC_5Ne3Dj6g&feature=youtu.be

For practical reasons there are Keras layers DenseReparametrization

• VI at work 

https://www.youtube.com/watch?v=MC_5Ne3Dj6g&feature=youtu.be


Bernstein VI
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Current Limitations of VI

1. Better / other divergences
2. Optimization procedure

– E.g. Less Noisy Gradient estimator
– …

3. Flexible variational distributions
– Mixtures (of Gaussian)
– Deep Normalizing Flows
– Use of Transformation Models 

21



The idea of transformation models (TM)
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The heart of a TM is a parameterized bijective transformation function f+, z =
ℎ$(𝑧) that transforms between a simple distribution 𝑝 𝑧 and a potentially complex 
distribution 𝑞$ 𝑤

Be careful “change of variable” formula

𝑞$ 𝜃 = 𝑝 𝑧 ⋅
𝜕𝑓-, 𝑧
𝜕𝑧

./

𝑝(𝑧)

𝑞$(𝜃)

𝜃 = 𝑓-,(z)



Using Bernstein-polynomial for 𝒉𝝀(𝒛)
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𝑧′

𝑤′ = ℎ' (𝑧()

𝑤′ = ℎ0 (𝑧′) = 3
12/

3
𝜗1

𝑀 + 1
B13 𝑧′

𝑧′ ∈ [0,1]

A Bernstein polynomial has nice properties:

• It can  approximate every function on the support [0,1] (Bernstein 1906)

• Its flexibility can be controlled by the order M

• It is bijective, i.e. monotone increasing, if parameters 𝜗/ ≤ 𝜗4 ≤ ⋯ ≤ 𝜗3

Most Likely Transformation (MLT) 2017 by T.Hothorn, L.Möst, P.Bühlmann https://onlinelibrary.wiley.com/doi/full/10.1111/sjos.12291
Use of Bernstein Polynomials to model complex predictive distribution 𝑝 𝑦 𝑥 using NN to control 𝜗"’s 
• B. Sick, T. Hothorn, O. Dürr (2021) ICPR, Deep Transformation Models introduction of method
• M. Arpogauss et al. (2021) Probabilistic Short-Term Low-Voltage Load Forecasting using Bernstein-Polynomial Normalizing Flows

https://onlinelibrary.wiley.com/doi/full/10.1111/sjos.12291
https://scholar.google.ch/citations?view_op=view_citation&hl=de&user=T8hH3TMnFPwC&sortby=pubdate&citation_for_view=T8hH3TMnFPwC:mB3voiENLucC


Single parameter models
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Single Parameter Models

• Fit the parameters of the transformation using 
Black Box Variational Inference 
– Done using TensorFlow 
– https://github.com/stefan1893/TM-VI
– Also for mean field

• Sandwich Bernstein With Linear Shift
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def nelbo(𝜆): 
𝜃* <- Samples 𝑖 = 1, … 𝑆 from variational 
NLL <- mean(-log(p(D|𝜃*)) 
KL  <- mean(log(q$(𝜃*))- mean(log(p(𝜃*))

In transformation models 𝜆 = 𝑎, 𝑏, 𝜗5, … , 𝜗3, 𝛼, 𝛽
Sample 𝑧* --> 𝜃* with that likelihood p(D|𝜃*) and prior p(𝜃*)
Little trick q$ 𝜃* = 𝑝(𝑧*)

https://github.com/stefan1893/TM-VI


Bernoulli experiment as one-parameter-model 
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Exact analytical posterior: 

Prior: 𝑝 𝜋 = Beta(𝛼 = 1.1, 𝛽 = 1.1)

Likelihood: p 𝐷 𝜋 = 𝜋 ⋅ 𝜋 = 𝜋&

Posterior:  𝑝 𝜋|𝐷 = Beta 𝛼 +∑𝑦', 𝛽 + 𝑛 −∑𝑦' = Beta 3.3,1.1

Bernoulli model 𝑦~Ber(𝜋) ;   two observations D = (𝑦! = 1, 𝑦" = 1).

~1/M
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Cauchy experiment as one-parameter-model
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Exact posterior via MCMC (Stan): 
data{
int<lower=0> N;
real<lower=0> gamma;
vector[N] y;

}
parameters{
real xi;

}
model{
y ~ cauchy(xi, gamma);  // likelihood
xi ~ normal(0, 1);            // prior

}

*Yao, Y., Vehtari, A., and Gelman, A. The curse and blessing of multimodal posteriors. https://arxiv.org/abs/2006.12335

Cauchy model 𝑦~Cauchy(ξ; γ) ;   6 observations sampled from a mixture-Cauchy*
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https://arxiv.org/abs/2006.12335


Multi-parameter models

28



Mean-field approximation for multi-parameter-models
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In mean-field VI we assume that we can model all variational distributions independently.

Hence the joint variational distribution is given by a product of marginal distributions:  

𝑞𝝀 𝒘 = ∏$%!
& 𝑞'-(𝑤$)

Pros: no need to model dependencies 
à less parameters are needed

Cons: dependencies are ignored

𝑤!

𝑤"

Possible bivariate Gaussians w/o dependencies

Impossible bivariate Gaussians with dependencies The famous figure 10.2 from Bishop

Our 𝐾𝐿(𝑞||𝑝) Reveres 𝐾𝐿(𝑝||𝑞)



Mean-field VI for multi-parameter NN
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We use Bayesian NNs to estimate the conditional mean 𝜇(𝑥) of (𝑦|𝑥) ∼ 𝑁(𝜇 𝑥 , 𝜎)

Both VI-approaches underestimate the uncertainty. TM-VI can’t leverage in mean-field.
Note: For Gaussian-VI ist known that mean-field does not hurt in deep NN https://arxiv.org/abs/2002.03704

https://arxiv.org/abs/2002.03704


Modeling Dependencies with a NN 

• Use 𝑞 𝜃(, 𝜃) = 𝑞 𝜃) 𝜃( 𝑞(𝜃()

• 𝜃( = 𝑓*+ 𝑧( = (
,-(

∑𝜗.( ⋅ 𝐵𝑒. 𝑧(

• 𝜃)|𝜃( = 𝑓*+ 𝑧(, 𝑧) = (
,-(

∑𝜗.) 𝑧( ⋅ 𝐵𝑒. 𝑧)
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𝑝(𝑧")

𝑞'(𝜃"|𝜃!)

𝑧", 𝑧!

𝑧", 𝑧!

This is controlled by NN 

M+1 constants

2



Modeling Dependencies with a NN cnt’d
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Transformation depends on smaller components (Triangular Map)

This is a NN for 𝑗 ≥ 2

Easy to calculate (Triangular Matrix)

For 2D, we need constants coefficients 𝜗(!, 𝜗!!, … 𝜗)! and a network 
For 3D, we would need 2 networks…
Efficient way, using Masked Autoregressive Flow (MAF) Networks which do not depend on 
earlier coordinates.



Results: Simple 1-D Regression Experiment
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Correlation:

 BF−VI: −0.994***  

MCMC: −0.993***

Correlation:

 BF−VI: −0.124***  

MCMC: −0.300***

Correlation:

 BF−VI: 0.131***  

MCMC: 0.310***

Correlation:

 BF−VI: −0.974***  

MCMC: −0.973***

Correlation:

 BF−VI: 0.969***  

MCMC: 0.969***

Correlation:

 BF−VI: 0.077*   

MCMC: 0.301***
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Results 8 Schools NCP (Standard Bayesian Benchmark)
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Model Definition in Stan 



Comparison with other methods (k-hat estimator) 

Model BF-VI NF-Planar* NF-NVP* Gaussian 
MF

8 Schools CP 0.61 1.3 1.1 0.9

8 Schools 
NCP

0.35 1.2 0.7 0.7

Diamond 30.23 ∞ ∞ 1.2 Larger Dataset à
Posteriors spiked 
Gaussians.

35

*A. K. Dhaka, A. Catalina, M. Welandawe, M. R. Andersen, J. Huggins, and A. Vehtari, “Challenges and opportunities in high-
dimensional variational inference,” arXiv preprint arXiv:2103.01085, 2021. 

c𝑘 ∈ [0,∞] is measure of quality for VI samples**

**Y. Yao, A. Vehtari, D. Simpson, and A. Gelman, “Yes, but did it work?: Evaluating variational inference,” in International Conference 
on Machine Learning. PMLR, 2018, pp. 5581–5590. 



Semi Structured Models
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Goal

Example: Images from Melanoma and clinical data (e.g. age of patient)

• Modeling complex posteriors for statistical (Bayesian) Models
• Modeling combination of DL models and interpretable statistical models
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Background: Bayesian Statistics vs. Bayesian Deep Learning 
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Sometimes we need complex distributions and don’t know the distribution family.

𝑥!

𝑥&

⋮

𝑥"

Complex posteriors 𝒑 𝜽 𝑫
“Classical Bayesian Statistics”

Deep Learning
𝜇ሺ𝑥ሻ𝑥
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c)
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• Parameters 𝜃 have interpretation
• Gold Standard MCMC Simulations works

• Breaks down in Big Data regime
• VI works 

• Need for complex distributions

• Parameters 𝜃 have no interpretation (weight space)
• Important is outcome (function space)  
• Simple Approximations also OK

• Liberty or depth paper (Gal 2021)
• MCMC Simulations are not possible
• VI works with simple MF distributions

• No urgent need for complex distributions



First Result for Semi Structured Models
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Conclusion and outlook

• VI allows for approximating posterior by an optimization process. Can use DL 
Toolbox 

• VI special important for semi-structured Bayesian models inaccessible so far (in 
our opinion)

• Current Challenges of VI
1.Constructing variational distributions that are flexible enough to match 

the true posterior distribution 
2.Defining suited variational objective for tuning the variational 

distribution, which boils down to finding the most suited divergence 
measure 

3.Developing robust and accurate stochastic optimization frameworks for 
the variational objective

• Contributed to 1, will work on 2 and 3.
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Thanks



Attik
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Bayes to the rescue: Results for Bayesian NN for 1-D
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https://arxiv.org/pdf/2002.03704.pdf
“Liberty or Depth”

MCMC methods such as HMC are the gold standard for Bayes. MCMC is sampling not fitting.
MCMC has Problems in Scaling
• Larger number of Data Points (no mini-batch) 𝑝 𝜃 𝐷 has the “Daten an der Backe”
• Large models sizes (Deep Learning is out of scope) 

https://arxiv.org/pdf/2002.03704.pdf

