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Agenda

e What is mutual information?

 Estimating mutual information
* Histogram
* Kruskov

e Mutual Information Neural estimation (MINE)
* Application to sensor registration



Linear dependence

Bitcoin and S&P500
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Bitcoin X and S&P500 Y is highly correlated. Pearson correlation coefficient measures linear relationships
between X and Y. But fails with slope and non-linear
relationships.



Non-linear dependence

e Mutual Information is given by

I(X,Y) = H[X] — H[X]|Y].
* Specifies “how much (in bits) do we know about X given Y?”.

H(X) H(Y)

H(X.Y)



Capturing non-linear dependencies

Given random variables X and Y, and function f

Y = f(X) + o€

sin(x)
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Fig. 1. Mutual information I (X, Y) measures the dependency of X and Y and is invariant to the
deterministic nonlinear transformation f (“equitability”).



MI is defined for arbitrary variables

* Given random variables ProjectedLidarPoints and Cameralmage

I (ProjectedLidarPoints, Cameralmage) =~ 20.89 bits.
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Estimating mutual information

* Definition
I(X; Y) = KL(PXY”PX 03¢ PY);

where Pyy is the joint distribution and Py @ Pyis the product of their marginals.

I(X,Y) = Hp,,[Px @ Py] — H[Pxy] = H[Px| + H[Py] — H[Pxy]
joint-entropy  entropy entropy  joint-entropy

* Naive “Histogram” approach:

Pxy (x,y)
I(X,Y) = Ipinnea(X,Y) = XyeyZyex Dxy)(x, y) log )

px (X)py (¥)

* Can be problematic with empty bins!



Estimating mutual information

* Improving estimation by k-nearest neighbor statistics [2]:

I(X,Y) = H[Px] + H[Py] — H[Pxy]

entropy entropy  joint-entropy

I(X,Y) = Lpn(X,Y) = H[Px] + H[Py] — H[Pxy]

N
HiX] = —y(k) +y(N) +log, + %Zlog

digamma digamma



Estimating mutual information

* K-nearest neighbor method is problematic for estimating joint entropy
H[Pyy]
as choosing the same k and computing

Lenn (X, Y) = H[Px] + H[Py] — H[Pyxy]

would effectively use different scales for the joint and marginal space.

* Kraskov’s method [2] corrects for that by choosing k dynamically!



Estimating mutual information in high
dimensions
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Fig. 2. Mutual information between two multivariate Gaussians with component-
wise correlation p € (-1, 1) [1]. Kraskov’s estimator [2] underestimates the true
Ml in high dimensions.



MINE - Neural mutual information estimation

* Maximizing the Donsker-Varadhan (DV) lower bound of the KL divergence
I(X,Y) = KL(Pxy||Px ® Py)
2 Sup DVU} M} ) = Ex~][ (x)] - log(Ey~M [e (y)]) )

with ] = Pyy and M = Py & Py and function space f € F.

* In the case of MINE [1], /4 is a neural network and sup DV (+; f5) is computed by
standard gradient ascent!

* The Auxilary dataset M = (X,Y™) is constructed by sampling y* without replacement
(shuffling).



MINE - Neural mutual information estimation

* Maximizing the Donsker-Varadhan (DV) lower bound of the KL divergence
I(X,Y) = KL(Pxy||Px ® Py)

> sup DV(/, M; /) = Ei - [fo((2,9))] = log(Eeyy-u[e0(@¥)]),

with and M = Py @ Py and function space /| € F.

* In the case of MINE [1], / is a neural network and sup DV (-; f») is

computed by back-prob and standard gradient ascent!



MINE — a proxy “classification” problem

* We need the auxiliary datasets and M = Py @ Py

* The dataset is generated by concatenating the given training
examples (X, Y).

* The dataset M = (X,Y™) is constructed by sampling y* without
replacement (shuffling).



MINE - Application
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(a) GAN (b) GAN+MINE

Figure 3. The generator of the GAN model without mutual in-
formation maximization after 5000 iterations suffers from mode
collapse (has poor coverage of the target dataset) compared to
GAN+MINE on the spiral experiment.

(a) Original data (b) GAN (c) GAN+MINE

Figure 4. Kernel density estimate (KDE) plots for GAN+MINE
samples and GAN samples on 25 Gaussians dataset.



Lidar-to-Camera registration I(Lidar, Camera)

* Problem definition:

* Variable X becomes the Lidar data k
* Variable Y becomes the camera data b

* Find unknown parameters
rotation R and translation t,
such that Ceoora = [RE]Lcooras
by Maximizing I(X, Y). Fig. 3. Registering Lidar X to camera Y means

finding the extrinsic calibration parameters R and t,
where R is a 3d rotation matrix and tis a 3d
translation vector.




Projecting Lidar data into image
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Fig. 4. Visualizing projected Lidar data points in the image plane of the camera: Unregistered (left) and
registered (right).
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