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A lot of visual data is not flat

Credits to Hao Su, Stanford 2017

Inpsection

Topography



The surge of geometric deep learning

• Started 2015 with big datasets ShapeNet & ModelNet

• Very active due to huge industry interests

Machine 
Learning

Computer 
Vision

Geometry

Industries are:
• Robotics
• 3d scanning
• 3d geometric modelling
• Autonomous driving
• Augemented reality
• Virtual reality
• Topography
• Etc.



3d deep learning tasks
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3d deep learning tasks

Credits to Hao Su, Stanford 2017



The data vs. the network

Geometry analysis

Geometry synthesis



Convolution Neural Networks. Where is the 
problem?
Images have a very easy 
regular data structure!

• Unique representation 
→ easy (e.g. flatten())

• Vector representation 
→ easy (e.g. flatten())

• Distance and dot product

→ easy (e.g. 𝑋 − 𝑍
2
𝑜𝑟 < 𝑋, 𝑌 > )

• Functional representation
→ easy (f: [0,1]2

→ ℝ) 

• Subsampling 
→ easy (e.g. X[0::2])



Euclidean vs. Non-Euclidean data
Non-Euclidean data can represent more complex 
items and concepts (extreme inductive bias).

Images, text, audio, and others can be treated as 
Euclidean data (little inductive bias).



Graph representation

Set of points                               +                     adjacency matrix                                  +   optional vertex attributes 

Adjacency matrix is either given or induced by metric (e.g. through k-nearest neighbors search)!



Order matters (not): Stanford bunny example

2d coordinate maps of the Stanford
bunny in scanning order (top) and
arbitrary order (bottom).

In unstructured 3d data order
is arbitrary.



Statistics matters: Topographic and depth maps

Credits: https://www.mdpi.com/remotesensing/remotesensing-08-00095/

Depth maps are structured and look like images, but 
have rougher local structures and smoother global 
structures (different image statistics compared to natural
images).



Convolution Neural Networks on grids

Convolution Pooling

𝑓 ∗ 𝑔 𝑥 =෍

−𝑀

𝑀

𝑓 𝑛 − 𝑚 𝑔[𝑚] Both operations need an underlying structure like defined neighborhoods, 
directions, order, translations and common vector space!
→ Image are flat, i.e. have a flat metric (not curved)
→ Images have a homogenous topology (every pixel has the same neighborhood)



No shift invariance on graphs

Credits to Shuman et. al., 2016



Different 3d data representations

• Rasterized form (regular)
• Multi-view RGB(D) images

• volumetric 

• Geometric form (irregular)
• Polygon mesh / wire frame

• Point cloud

• Parametric surfaces

• Primitive based CAD (CSG)



Different 3d data representations

• Rasterized form (regular)
• Multi-view RGB(D) images

• volumetric 

• Geometric form (irregular)
• Polygon mesh / wire frame

• Point cloud

• Parametric surfaces

• Primitive based CAD (CSG)

→ Standard convolution and pooling operator 

→ Discrete 3d convolution and pooling operator 

→ e.g. no homogenous neighborhood

→ e.g. no canonical order

→ e.g. no unique parametrization

→ e.g. no homogenous neighborhood



Existing 3d learning algorithms



Deep Learning on 3d meshes
- Math heavy approach, will be a standard deep learning tool, soon –



The math ingredients of meshes

Credits to Michael Bronstein et. al., 2016 and Keenan Crane, 2019

Manifolds

Differential geometry

Differential topology

Graph theory

Sparse data structures

Laplacian



Three strategies to define a convolution
neural network on meshes
• RNNs (more like a brute force approach)

• Conduct convolution on a parametrization (typically 2d) of a 
mesh/graph (typically 3d)

• Conduct convolution on the mesh

𝑓:𝑀 → ℝ3 , 𝑀 ⊃ ℝ2 𝑎𝑛𝑑 𝑓 𝑀 ⊃ ℝ3



Bringing 3d into Euclidean plane and proceed 
with traditional techniques



Desired properties for convolution without 
parametrization
- Translation invariant filters, i.e. weight sharing
- Localized, i.e. edge detector



More inductive bias, please

• Receptive fields
• Multi-scale analysis

Credits to Michael Deferrard et. al., 2016 



Geometry approach: Geodesic CNN

• Local system of geodesic polar coordinate

• Extract a small patch at each point x

• Compute response with a trainable patch-like filter

Credits to Jonathan Masci et. al., 2015

𝑓 ∗ 𝑔 𝑥 = ෍

𝑖

𝑎𝑛𝑔𝑙𝑒𝑠

෍

𝑗

𝑟𝑖𝑛𝑔𝑠

𝑔𝑖𝑗𝐷𝑖𝑗 𝑥 𝑓

One weight g for all i*j basis functions 
In a local point specific 
coordinate system



Geometry approach: Geodesic CNN

Credits to Jonathan Masci et. al., 2015

• Direct encoding of the differential geometry

• The radius of the geodesic patches must be sufficiently small to 
acquire a topological disk

• No effective pooling, purely relying on convolutions to increase 
receptive field

• Slow because of huge tensors because of local of coordinate frames

• Limited to rotation invariant filters or curvature aligned filters



Signal approach: Spectral CNN

Credits to Michael Bronstein et. al., 2016 

Generalized convolution allows spectral filtering!

The Laplace operator tells us something 
about curvature!
>> We can compute Eigenfunctions of the Laplacian 



Signal approach: Spectral CNN

Credits to Michael Bronstein et. al., 2016 



Signal approach: Spectral CNN

Credits to Mario Botsch et. al., 2010

Mesh basis: Eigenfunctions of the Laplace-Beltrami-Operator Δ

Define the filter function g as a function of 
Laplace-Beltrami-Operator s a Δ

(Eigenspace of Graph)

(Function of Eigenvalues)



Signal approach: Spectral CNN

Credits to Jonathan Masci et. al., 2015

• Filters are exactly localized in r-hops support

• O(1) parameters per layer

• No computation of φ, φT ⇒ O(n) computational complexity

• Stable under coefficients perturbation

• Filters are basis-dependent ⇒ does not generalize across graphs, i.e. 
Eigenfunctions are Laplacian-specific and therefore graph specific.



Graph approach: Graph CNN

Credits to Michael Bronstein et. al., 2018

- Minimal inner structure (no fixed indexing of the nodes required)
- Localized (only neighbors are considered)
- Weight sharing (convolution-like operations)
- Graph topology independent

𝑥𝑖 = 𝑓_𝑔𝑛𝑛 𝑥𝑗: 𝑗 → 𝑖



Graph approach: Graph CNN

Credits to Michael Bronstein et. al., 2018



Graph approach: Graph CNN

• Generalizes well to changing graph topologies

• Unified framework

• Slow k-nearest neighbor searches

• Only pairwise relationships and no assumption about being locally flat



Graclus, the typical pooling layer

• Graph downsampling == graph coarsening == graph pooling == graph 
partitioning. Decompose Graph into meaningful clusters.

• Graph partitioning is NP hard → Use Graclus approximation

Credits to Dhillon, Guan, Kulis 2007 and Defferrard, Bresson, Vandergheynst 2016



Techniques can be easily generalized to
general graphs



Open issues with mesh based representation

• Mesh as network output is difficult as topology may be variable

• Not clear how to generate shapes with topology variation

• No unique parametrization available, we need to match graphs in 
order to compute loss function!



Deep Learning on point 
clouds

- The computer scientists’ approach: theory follows implementation –



Statistics of geometry

Strong local correlation
Strong local correlation e.g. planar patches

High local variation

High local variation



The desired pipeline

Neural 
Network

Natural questions arise:
- How to order input points?
- How to induce that nearby points are correlated
- Which loss functions can I use?

Loss



Simple approach

• 𝑓 𝑆 = 𝑔( ℎ 𝑠1 , ℎ 𝑠2 , … , ℎ 𝑠𝑁 ),
𝑤𝑖𝑡ℎ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑝 ℎ: ℝ𝐹 → ℝ𝑀, 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑔: 2𝑋 → ℝ 𝑎𝑛𝑑 𝑆 ⊇ ℝ𝐷

ℝ𝐹 ℝ𝑀

ℎ𝜃(𝑠1)

ℎ𝜃(𝑠2)

ℎ𝜃(𝑠𝑁)

ℝ𝑀

𝑚𝑎𝑥(⋅)



The desired pipeline

Neural 
Network

Natural questions arise:
- How to order input points?                                         → Doesn’t matter, feature map h() gets applied individually
- How to induce that nearby points are correlated    → Learned from data
- Which loss functions can I use?                                  → g() yields a vector, standard losses for classification, etc. 

Loss

→What about segmentation, deconvolution, predicting points? 



Example semantic segmentation



Correspondence problem when predicting 
point clouds

Given two sets of points, measure their discrepancy

𝐿𝑜𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛?



Typical distances between sets

𝑑𝐻𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓 𝑆1, 𝑆2 = max
𝑥∈𝑆1

min
𝑦∈𝑆2

𝑥 − 𝑦
2

2
+max

𝑥∈𝑆2
min
𝑦∈𝑆1

𝑥 − 𝑦
2

2
Not very robust!



Typical distances between sets

𝑑𝐶ℎ𝑒𝑚𝑓𝑒𝑟 𝑆1, 𝑆2 = ∑
𝑥∈𝑆1

min
𝑦∈𝑆2

𝑥 − 𝑦
2

2
+ ∑

𝑥∈𝑆2

min
𝑦∈𝑆1

𝑥 − 𝑦
2

2

𝑑𝐸𝑎𝑟𝑡ℎ𝑀𝑜𝑣𝑒𝑟 𝑆1, 𝑆2 = min
𝜙: 𝑥1 →𝑥2

∑
𝑥∈𝑆1

𝑥 − 𝜙(𝑥)
2

2
𝑤𝑖𝑡ℎ 𝜙: 𝑆1 → 𝑆2 𝑖𝑠 𝑎 𝑏𝑖𝑗𝑒𝑐𝑡𝑖𝑜𝑛

Simple function of coordinates:
- In general positions, the correspondence is unique
- With infinitesimal movement, the correspondence does not change
- Conclusion: differentiable almost everywhere



The desired pipeline for point predictions

Neural 
Network Loss on sets

→We want to predict points in space! How to implement devonvolution?

{ 𝑥1, 𝑦1, 𝑧1 ,
𝑥2, 𝑦2, 𝑧2 ,

… ,
𝑥𝑁, 𝑦𝑁, 𝑧𝑁 }



Recap Image Segmentation with DeconvNet

Credit: FCNN, Long et al.



Observation: Parametrization looks like image 
deconvolution

Credits Keenan Crane, 2019



Example Smooth Point Cloud Prediction

Network outputs are coordinate maps (x, y, z) !



Recap: Statistics of geometry

Strong local correlation
Strong local correlation e.g. planar patches

High local variation

High local variation



Full example architecture of a point network

Credit Hao Su, 2017

Loss on sets

Local Correlations

High Variations



Sharp and Smooth structures



Example Shape Completion from RGB-D

Credit Hao Su, 2017



Farthest point sampling (FPS), the typical 
pooling layer



Common Framework
- Everything is a graph -



Comparing to Graph CNN

Joan Bruna et. al., 2014

Very similar to Graph CNN with euclidean metric…
…Local feature extraction, graph coarsening, then repeat .



Graph CNN as a unification framework

Credits to Michael Bronstein et. al., 2018



Example in PyTorch



Graph CNN

• Practical applicable, easy to understand, fast, works well

• Unified framework, easy to implement

• Models only pairwise correlations

• Not using curvature information

• Set theoretic approach

• Not Riemannian



Cool, but only half the story!
- Carl Friedrich says-



Recap: Statistics of geometry

Strong local correlation
Strong local correlation e.g. planar patches

High local variation

High local variation



Recap: Statistics of geometry

Strong local correlation
Strong local correlation e.g. planar patches

High local variation

High local variation

This is does not describe a smooth 2d Riemannian
manifold!



Why is it not a 2d Riemannian manifold?

Pairwise correlation is a straight line and not a curve (i.e. 
curved space)!



And, topological algebra does Deep Learning, 
too

Current Graph CNNs only work for scalar functions, what 
about wind directions?



Thanks for your 
attention!

Matthias Hermann

Hochschule Konstanz
Institute for Optical Systems
Matthias.hermann@htwg-konstanz.de
www.ios.htwg-konstanz.de
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Next time, integrating curvature!

Δ𝑓 = 𝑑𝑖𝑣∇𝑓 = 𝑓𝑢𝑢 + 𝑓𝑣𝑣

𝐾 =
< ∇𝑒2∇𝑒1 − ∇𝑒1∇𝑒2 𝑒1, 𝑒2 >

det 𝑔

Gaussian curvature is an intrinsic property! 


