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* Why geometric deep learning?
e Limits of traditional Convolutional Neural Networks

* Machine Learning on non-Euclidean domains
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e General graphs
e Point clouds a.k.a. Sets

e A Common Framework



A lot of visual data is not flat

Robotics Augmented Reality

Topography

Autonomous driving Medical Image Processing

Credits to Hao Su, Stanford 2017



The surge of geometric deep learning

 Started 2015 with big datasets ShapeNet & ModelNet
* Very active due to huge industry interests

Industries are:

* Robotics

* 3dscanning

* 3d geometric modelling
* Autonomous driving

* Augemented reality
Geometry e Virtual reality
 Topography

* Etc.

Machine
Learning




3d deep learning tasks

3D geometry analysis
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It is a chair!

skateboard

Classification Parsing Correspondence
(object/scene)

Credits to Hao Su, Stanford 2017



3d deep learning tasks

3D synthesis
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Final Completion Result

Monocular

3D reconstruction
Credits to Hao Su, Stanford 2017

Shape completion Shape modeling



3d deep learning tasks

3D-assisted image analysis
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Cross-view image retrieval Intrinsic decomposition

Credits to Hao Su, Stanford 2017



The data vs. the network
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Convolution Neural Networks. Where is the

problem?

Images have a very easy
regular data structure!

* Unique representation
- easy (e.g. flatten())

* \ector representation
- easy (e.g. flatten())

* Distance and dot product
- easy (e.g. ||X—Z||2 or < X,Y >)
* Functional representation
- easy (f: [0,1]? 2 R)

e Subsampling
- easy (e.g. X[0::2])
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Fuclidean vs. Non-Euclidean data

Images, text, audio, and others can be treated as Non-Euclidean data can represent more complex
Euclidean data (little inductive bias). items and concepts (extreme inductive bias).

Bacteria Archaea Eucarya

Molecules
Numbers
. e
The quick brown OS] —p
) o0 (@] O ®. / ®
fox jumps over & 3\ R %
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Text Audio

Networks Manifolds



Graph representation
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Adjacency matrix is either given or induced by metric (e.g. through k-nearest neighbors search)!
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Order matters (not): Stanford bunny example

X-coordinates Y-coordinates Z-coordinates

!

|
ll

X-coordinates Y-coordinates

2d coordinate maps of the Stanford
bunny in scanning order (top) and
arbitrary order (bottom).

In unstructured 3d data order
is arbitrary.




Statistics matters: Topographic and depth maps

Depth maps are structured and look like images, but
have rougher local structures and smoother global
structures (different image statistics compared to natural
images).

Depth Prediction

Credits: https://www.mdpi.com/remotesensing/remotesensing-08-00095/



Convolution Neural Networks on grids

Convolution Pooling
Rectified feature map
20123|35]| 14
4648|2817 ! 4 Pooled feature map
49155|36| 7 2 6 max pooling with 2x2 filters 6
and stride 2
38|10 | 61 | 53 e
34(43| 5| 8 3| 4\| o| 7 4 | 7
2125 |21 |27 18
1 3 1
4159 6 |13
d il il Max(3, 4,1,2) = 4

Both operations need an underlying structure like defined neighborhoods,
directions, order, translations and common vector space!

- Image are flat, i.e. have a flat metric (not curved)

- Images have a homogenous topology (every pixel has the same neighborhood)




No shift invariance on graphs

-

Euclidean domain

L

(C) Ts"f

(a) Ts f (b) T f

Graph domainl/'? l
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(d) T:f (e) Tu f (f) Tan f

Credits to Shuman et. al., 2016



Different 3d data representations

* Rasterized form (regular)
e Multi-view RGB(D) images
* volumetric

 Geometric form (irregular)
* Polygon mesh / wire frame
* Point cloud

 Parametric surfaces
e Primitive based CAD (CSG)




Different 3d data representations

* Rasterized form (regular)

e Multi-view RGB(D) images - Standard convolution and pooling operator
e volumetric —> Discrete 3d convolution and pooling operator

 Geometric form (irregular)

 Polygon mesh / wire frame — e.g. no homogenous neighborhood
* Point cloud

* Parametric surfaces

* Primitive based CAD (CSG)

— e.g. no canonical order
—> e.g. No unique parametrization

- e.g. no homogenous neighborhood



Existing 3d learning algorithms

e [Su et al. 2015] [Maturana et al. 2015]

s 4 [ [Kalogerakis et al. 2016] [Wu et al. 2015] (GAN)
A TN [Qi et al. 2016]
9 . [Liu et al. 2016]

[Wang et al. 20171 (O-Net)
[Tatarchenko et al. 20171 (OGN)

2D shape model :

rendered with 20 renderec
different virtuadl cameras images

Multi-view

[Defferard et al. 2016)
[Henaff et al. 2015]
LYi et al. 20171 (SyncSpecCNN)

[Tulsiani et al. 20171
[Li et al. 20171 (GRASS)

Point cloud Mesh (Graph CNN) Part assembly




Deep Learning on 3d meshes

- Math heavy approach, will be a standard deep learning tool, soon —




The math ingredients of meshes

IEEE 5IG PROC MAG 1

Sparse data structures Geometric deep learning:

going beyond Euclidean data

Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, Pierre Vandergheynst

Manifolds

Diffe re ntial geomet ry Many scientific fields study data with an underlying struc-  the data such as stationarity and compositionality through

ture that is a non-Euclidean space. Some examples include local statistics, which are present in natural images, video, and
social networks in computational social sciences, sensor net-  speech [14], [15]]. These statistical properties have been related
™  waorks in communications, functional networks in brain i imag- to physics [1l] and formalized in specific classes of convo-
= ing, regulatory networks in genetics, and meshed surfaces lutional neural networks (CNNs) [I71, [18], I]El In image

frm cvmrmrastoar srenmbisaen Te omeses smeliantioame soeh e mben e s v mrmmliastiaees e sam A dae G e

DISCRETE DIFFERENTIAL GEOMETRY:
AN APPLIED INTRODUCTION

Differential topology Laplacian

Graph theory

Fig. I. Top: tangent space and tangent vectors on a two-dimensional manifold
(surface). Bottom: Examples of isometric deformations.

Keenan Crane

Credits to Michael Bronstein et. al., 2016 and Keenan Crane, 2019



Three strategies to define a convolution
neural network on meshes

* RNNs (more like a brute force approach)

e Conduct convolution on a parametrization (typically 2d) of a
mesh/graph (typically 3d)

M

FFFFFF

e Conduct convolution on the mesh




Bringing 3d into Euclidean plane and proceed
with traditional technigues

* Map curved 3D surfaces to 2D Euclidean plane

0

Original
Shape Coordmates
Ayan Sinha, Jing Bai, Karthik Ramani Maron et al.
“Deep Learning 3D Shape Surfaces Using Geometry Images” “Convolutional Neural Networks on Surfaces via Seamless Toric Covers’

ECCVz2016 SIGGRAPH2017



Desired properties for convolution without
parametrization

- Translation invariant filters, i.e. weight sharing
- Localized, i.e. edge detector

image credit: D. Boscaini, et al image credit: D. Boscaini, et al.

convolutional along  convolutional considering underlying
spatial coordinates geometry



More inductive bias, please

* Receptive fields
e Multi-scale analysis

grid structure

graph structure

Credits to Michael Deferrard et. al., 2016

Image Maps
Input
1 = \ s il
Convol Ko Fully Connected
Su bsampl ing
% E i hierarchical graph coarsening?

rom Michaél Deffer



Geometry approach: Geodesic CNN

» Local system of geodesic polar coordinate
« Extract a small patch at each point x
« Compute response with a trainable patch-like filter

angles rings
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Credits to Jonathan Masci et. al., 2015



Geometry approach: Geodesic CNN

* Direct encoding of the differential geometry

* The radius of the geodesic patches must be sufficiently small to
acquire a topological disk

* No effective pooling, purely relying on convolutions to increase
receptive field

* Slow because of huge tensors because of local of coordinate frames
* Limited to rotation invariant filters or curvature aligned filters

Credits to Jonathan Masci et. al., 2015



Signal approach: Spectral CNN

Generalized convolution of f,g € L?(X) can be defined by analogy

(frxg)(z) = Z Sf, Or) L2(x) (9, ¢’k>L2{:X)J¢k($)

k=1 . . )
product in the Fourier domain
inverse Fourier transform Generalized convolution allows spectral filtering!
B b .?-_a) Ty
'I-T-_-:-.J- \ o A =T ‘!1

N :_ ‘1_ 1 - -_”L.f:-l. e S
e Lol - .J, Ll
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The Laplace operator tells us something
about curvature!
>> We can compute Eigenfunctions of the Laplacian

e

Figure 3.10. Ilustration of the quantities used in the derivation of the discrete
Laplace-Beltrami operator and discrete Gaussian curvature operator.

Credits to Michael Bronstein et. al., 2016



Signal approach: Spectral CNN

40

in

Graph

[FIGS3] Example of the first four Laplacian eigenfunctions ¢y, . . ., ¢3 on a Euclidean domain (1D line, top left) and non-Euclidean domains
(human shape modeled as a 2D manifold, top right; and Minnesota road graph, bottom). In the Euclidean case, the result is the standard

Fourier basis comprising sinusoids of increasing frequency. In all cases, the eigenfunction ¢ corresponding to zero eigenvalue is constant
("'DC).

Credits to Michael Bronstein et. al., 2016



Signal approach: Spectral CNN

Mesh basis: Eigenfunctions of the Laplace-Beltrami-Operator A

Define the filter function g as a function of
Laplace-Beltrami-Operator sa A

ga(A) = ®g.(A)®"T (Eigenspace of Graph)

oe
0w
0w
o
0n
L]
oce’
L
LN
o
o1

r—1 -
ga(A) =) a;N (Function of Eigenvalues) o ,02 e
J=0

V10 V30

Credits to Mario Botsch et. al., 2010



Signal approach: Spectral CNN

* Filters are exactly localized in r-hops support

* O(1) parameters per layer

 No computation of ¢, dT = O(n) computational complexity
 Stable under coefficients perturbation

* Filters are basis-dependent = does not generalize across graphs, i.e.
Eigenfunctions are Laplacian-specific and therefore graph specific.

Credits to Jonathan Masci et. al., 2015



Graph approach: Graph CNN

;@ 0 . 0 0 K _
h“(_) 0 O ‘ Q O u'(( ny

sumnnn /\' -//'\'

X. X.
i J

- Minimal inner structure (no fixed indexing of the nodes required)
- Localized (only neighbors are considered)

- Weight sharing (convolution-like operations)

- Graph topology independent

= f-gmn(ixjj = i})

Credits to Michael Bronstein et. al., 2018



Graph approac
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Graph approach: Graph CNN

e Generalizes well to changing graph topologies

* Unified framework

* Slow k-nearest neighbor searches

* Only pairwise relationships and no assumption about being locally flat



Graclus, the typical pooling layer

* Graph downsampling == graph coarsening == graph pooling == graph
partitioning. Decompose Graph into meaningful clusters.

* Graph partitioning is NP hard = Use Graclus approximation

G'=¢g G' G? Coarsening structure
( 0\ r""'(1\—{ 6  :} (01 »/’(6—7/] 04 ‘éf,’) 1ol ‘,,2 L3 [ 4 ]F 6 F
] (4 Je( 5 ) ,,[ \\ 1] [2] (3]
(2 \/ T (25 —49)
. W (o - 0 1|

(binary tree)

Credits to Dhillon, Guan, Kulis 2007 and Defferrard, Bresson, Vandergheynst 2016



Technigues can be easily generalized to
general graphs

3D shape graph social network molecules



Open issues with mesh based representation

* Mesh as network output is difficult as topology may be variable
* Not clear how to generate shapes with topology variation

* No unique parametrization available, we need to match graphs in
order to compute loss function!




Deep Learning on point
clouds

- The computer scientists’ approach: theory follows implementation —



Statistics of geometry

" High local variation

- High local variation

Strong local correlation _
Strong local correlation e.g. planar patches



The desired pipeline

Object Classification

» Part Segmentation

Scene Parsing

Neural

Network

Natural questions arise:

- How to order input points?

- How to induce that nearby points are correlated
- Which loss functions can | use?



Simple approach

* f(S) — g({h(sl)) h(Sz), ety h(SN)});

with feature map h: RFf - RM, symmetric g:2% > Rand S 2 R”




The desired pipeline

Object Classification

» Part Segmentation

Scene Parsing

Neural

Network

Natural questions arise:

- How to order input points? - Doesn’t matter, feature map h() gets applied individually
- How to induce that nearby points are correlated —> Learned from data
- Which loss functions can | use? - g() yields a vector, standard losses for classification, etc.

- What about segmentation, deconvolution, predicting points?



Example semantic segmentation




Correspondence problem when predicting
point clouds

Loss Function?

Given two sets of points, measure their discrepancy



Typical distances between sets

2 2
d S+,S,) = maxmin||x — + max min||x — !
Hausdorff( 1,52) A yeszll vl |2 s y651|| yl |2 Not very robust

\ °



Typical distances between sets

2 2
d S$1,S,) = min||x — y||. + min||x — y|
Chemfer( 1, 2) xe%ﬁ’esZ' y |2 xg:SZYESl' y |2

dearinmover(S1,S2) = min ) ||x — gb(x)||2 with ¢:S; = S, is a bijection
d):xl —X2 XES]_ 2

e

Simple function of coordinates:

- In general positions, the correspondence is unique

- With infinitesimal movement, the correspondence does not change
- Conclusion: differentiable almost everywhere



The desired pipeline for point predictions

{ (x1,y1,21),
Neural (x2,V2,23),

Network Loss on sets

(XN, YN, Zn)}

- We want to predict points in space! How to implement devonvolution?



Recap Image Segmentation with DeconvNet

4 224x224 224x224
Deconvolution network 11gx11
56x 56
28x28
- 14314 4
11 1x1 @
)
Unpoaling Unpooling
e - T - Unpooling /’
S I L!nch;ITrTg
o - . -‘_—_h"""h-..._‘ kL
Deconv network for image segmentation Tpeeling

Credit: FCNN, Long et al.



Observation: Parametrization looks like image
deconvolution

Surface parametrization (2D <»3D mapping)
A

y-map

Z-map

coordinate maps
Credits Keenan Crane, 2019



Example Smooth Point Cloud Prediction




Recap: Statistics of geometry

" High local variation

o \

High local variation

Strong local correlation _
Strong local correlation e.g. planar patches



Full example architecture of a point network

. O e — oe— — — e 0 DN O e m— — e e e B e E— e—— — - — S o e e—— e—— -y

. Local Correlations

Capture common structures
= (x1,¥1,21)
:ﬁr ' '|fl>[ (x2, Y2, 22) ]
(j" e r)’n 5 ZTL:l
) (z1,91,21)
P T2, Y2, |

o A W\ T ' N %{?,32} If> Loss on sets

% !
lp& =1 (1‘:,3}1.21}

dense : i> (:cz,?«_?,zz} |

|

|

|:'-‘*'1'11 Yns zn}

Capture intricate structures | | Jm
o) - High Variations ;

— e — e DN O e o — — — s BN B e e s s s IS S-S = — e— e— e—

Credit Hao Su, 2017



Sharp and Smooth structures

. -
\

CVPR "17, Point Set Generation




Example Shape Completion from RGB-D

. & =
@ \ 2
% %

EVE Y

RGBD map (input) 90° view of input output: completed point cloud

»
8,

R
N
-

Credit Hao Su, 2017



Farthest point sampling (FPS), the typical
pooling layer




Common Framework

- Everything is a graph -



Comparing to Graph CNN

Very similar to Graph CNN with euclidean metric...
...Local feature extraction, graph coarsening, then repeat.

Joan Bruna et. al., 2014




Graph CNN as a unification framework

Aggregation Edge Function Learnable parameters
PointNet [Qi et al. 2017b] — he(xi,Xj) = hg(x;) (S
PointNet++ [Qi et al. 2017¢] max ho(xi,xj) = hg(x;) C)
MoNet [Monti et al. 2017a] 2 ho . w, (Xi,Xj) = Om - (Xj O gw,, (u(xi, Xj))) Wn,Om
PCNN [Atzmon et al. 2018] ¥ hg, (Xi,Xxj) = (Om - xj)g(u(xi, x;)) [

Table 1. Comparison to existing methods. The per-point weight w; in [Atzmon et al. 2018] effectively is computed in the first layer and could be carried
onward as an extra feature; we omit this for simplicity.

Credits to Michael Bronstein et. al., 2018



Net(torch.nn.Module):
__ipit_ (self):
super(Net, ). init_ ()

Example in PyTorch |t i

Seq(Lin(coord dims + 64, 128), RelU(), Lin{(128, 128))
.conv2 = PointConv(local nn=nn)

.1in2 = Lin(128, 256)
.1in3 = Lin(256, num classes)

forward(self, data):
pos, batch = data.pos, data.batch

edge index = radius graph(pos, r=0.2, batch=batch)
X = F.relu( .convl( » pos, edge index))

idx = fps(pos, batch, ratio=e.5)
X, pos, batch = x[idx], pos[idx], batch[idx]

edge index = radius graph(pos, r=e.2, batch:batchﬂ
X = F.relu( .conv2(x, pos, edge index))

x = global max pool(x, batch)

X = F.relu( .1in2(x))

X = .1in3(x)

return F.log softmax(x, dim=-1)

model = Net()
optimizer = torch.optim.SGD(model.parameters(), lr=lrate, momentum=0.95)
loss = ( X, y: F.nll loss(F.log softmax(x, dim=1), y))

from ummon import *

with Logger(loglevel=2a, logdir='", log batch interval=1) as lg:
trn = ClassificationTrainer(lg, model, loss, optimizer)
trn.fit(train_loader, epochs=160)




Graph CNN

* Practical applicable, easy to understand, fast, works well
e Unified framework, easy to implement

* Models only pairwise correlations

* Not using curvature information

* Set theoretic approach Theorem:
. . A Hausdorff continuous symmetric function f:2* — R can be arbitrarily
° N Ot R I€Mannian approximated by PointNet.

e e e e e

7 —fy (MAX (b} )| <

________________ -K---_,'

ScR?. PointNet (vanilla)



Cool, but only half the story!

- Carl Friedrich says-



Recap: Statistics of geometry

" High local variation

o \

High local variation

Strong local correlation _
Strong local correlation e.g. planar patches



Recap: Statistics of geometry

This is does not describe a smooth 2d Riemannian

manifold!

High local variation

Strong local correlation _
Strong local correlation e.g. planar patches



Why is it not a 2d Riemannian manifold?

planes hormal
of principal vector

Pairwise correlation is a straight line and not a curve (i.e.
curved space)!



And, topological algebra does Deep Learning,
too

Gauge Equivariant Convolutional Networks and the Icosahedral CNN

Current Graph CNNs only work for scalar functions, what
about wind directions?

maps (i.e. fields), but the choice of gauge is ultimately arbitrary.
Hence, the network should be equivariant to gauge transformations,
such as the change between red and blue gauge pictured here.

manifolds that depend only on the intrinsic geom-
etry, and which includes many popular methods
from equivariant and geometric deep learning.

C
- proach to neural network architecture design. Lo s
N Equivariant networks have shown excellent per- : A VAL ; ﬁif.’ 4 | S S

> formance and data efficiency on vision and med- S

< ical imaging problems that exhibit symmetries. Vi Uy cM DU Va
2 Here we show how this principle can be extended

beyond global symmetries to local gauge transfor- Figure 1. A gauge is a smoothly varying choice of tangent frame

N mations. This enables the development of a very on a subset U of a manifold M. A gauge is needed to represent
— general class of convolutional neural networks on geometrical quantities such as convolutional filters and feature
Q
—]

7]

We implement gauge equivariant CNNs for sig-

]
¢
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Next time, integrating curvature!
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Laplace-Beltrami:
The Swiss Army Knife of Geometry Processing
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