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Convolutional neural

networks (CNNs)
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Hoeser, T. et. Al. (2020). Object Detection and Image Segmentation with Deep Learning on Earth Observation Data: A Review-Part I: Evolution and Recent Trends.



Vision Transformers (ViT) outperform CNN

Ours Ours BiT-L Noisy Student
(ViT-H/14)  (ViT-L/16)  (ResNet152x4) (EfficientNet-L2)

ImageNet 88.36 87.61 +0.03 87.54 £+ 0.02 88.4/88.5"
ImageNet Real 90.77 90.24 +0.03 90.54 90.55
CIFAR-10 99.50 £ 0.06 99.42+0.03  99.37 + 0.06 -
CIFAR-100 94.55+0.04 93.90+0.05 93.51 + 0.08 -
Oxford-IIIT Pets 97.56 £0.03 97.32+0.11  96.62 + 0.23 =
Oxford Flowers-102  99.68 - 0.02 99.74 +0.00 99.63 + 0.03 -

VTAB (19 tasks) 77.16+0.29 7591+0.18 76.29 +1.70 -
TPUv3-days 2.5k 0.68k 9.9k 12.3k

Table 2: Comparison with state of the art on popular image classification datasets benchmarks.
Vision Transformer models pre-trained on the JFT300M dataset often match or outperform ResNet-
based baselines while taking substantially less computational resources to pre-train. *Slightly im-
proved 88.5% result reported in Touvron et al. (2020).

Dosovitskiy, A., et. Al (2020). An image is worth 16x16 words: Transformers for image recognition at scale.



Vision image transformer (ViT) architecture

Dosovitskiy, A., et. Al (2020). An image is worth 16x16 words: Transformers for image recognition at scale. / https://theaisummer.com/vision-transformer/



Content

* CNNs and ViT

* Images, patches and sequences
 Attention is all you need

* The multi-head self-attention layer

e Stacking multiple layers and classification
* Closing notes



Transforming images into patches

Transformer Encoder
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Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).

Dosovitskiy, A., et. Al (2020). An image is worth 16x16 words: Transformers for image recognition at scale.



Why is attention all we need?
Attention distance and visualization.

24 Conv layers with 3x3 kernel and single stride
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The model attends to image regions that are Attention distance was computed as the average distance
semantically relevant for classification. between the query pixel and the rest of the patch, multiplied by
the attention weight.



How the vision attention works

Split an image into patches

Flatten the patches

Produce lower-dimensional linear embeddings from the flattened patches
Add positional embeddings

Feed the sequence as an input to a standard transformer encoder

Pretrain the model with image labels (fully supervised on a huge dataset)

N o Uk WNE

Fine-tune on the downstream dataset for image classification



Transform image to patches

* These patches are then
flattened and sent through a
single Feed Forward layer to
get a linear patch projection.

* This feed forward layer
contains the embedding
matrix E.

* Note that this is equivalent to
a standard 2D-convolution
with stride same as kernel
size.

https://blog.paperspace.com/vision-transformers/



Single D-dimensional linear layer projection
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Linear embeddings look like CNNs

Alexnet 1st conv filters VIT 1st linear embedding filters

RGB embedding filters
(first 28 principal components)

Dosovitskiy, A., et. Al (2020). An image is worth 16x16 words: Transformers for image recognition at scale.



Add class token

. * For classification, the authors
podcih ProyechioNs

took inspiration from the original
/ / \, BERT paper by concatenating a

7 learnable (randomly initialized)
[class] embedding with the other
) patch projections.
D ?, 1€ 2€ S T
I | * The number of tokens m is then
L N+1.
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https://blog.paperspace.com/vision-transformers/



Add position token

Transformers is that the order of
a sequence is not enforced
naturally since data is passed in

@j « Another problem with

~ at a batch.
% 1€ 2€ € + . .
- e The original Transformer paper
suggests using Positional
Encodings/Embeddings that
+ establish an order in the inputs.
:

https://blog.paperspace.com/vision-transformers/



Image patches are now a sequence of
tokens for a standard transformer
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* The flattened patches (tokens) are
transformed by another three
different linear projection Q, K,
and V.

e Think of three “split paths”.
* nand D typically identical.



\

The Scaled Dot Product Attention (SDPA) to

prevent vanishing gradients
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The "Self" in Self Attention comes
from comparing the tokensin a
sequence with every other token
in the same sequence.

E.g., a sequence of 5 token vectors
(i.e., 5 patches), the resulting
attention matrix will have 5x5
entries learning the relationships
between each word with the other
words.

Very similar to the Gram-matrix
idea of the “Neural Style Transfer”.

Has also “quadratic complexity”.



Multi-Head self-attention (MSA)
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This resulting matrix captures the information of all the heads and can be sent to a linear feed forward layer
with hidden layer dimension J.



Stack multiple “encoder blocks”
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Attention map

* To compute maps of the
attention from the output token
to the input space Attention
Rollout is used.

" ¥ F
. . . % . . . * Averaged attention weights of

ViTL/16 across all heads and then
- . recursively multiplied the weight

) . , . . . e matrices of all layers.
bk et

dlllll

Abnar, S., & Zuidema, W. (2020). Quantifying attention flow in transformers. arXiv preprint arXiv:2005.00928.




How the vision attention works

Split an image into patches

Flatten the patches

Produce lower-dimensional linear embeddings from the flattened patches
Add positional embeddings

Feed the sequence as an input to a standard transformer encoder

Pretrain the model with image labels (fully supervised on a huge dataset)

N O Uk WD e

Finetune on the downstream dataset for image classification



Classifier works on top of the “class token” only

Transformer Encoder
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Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).



How “big” are the models

Transformer Encoder
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Model Layers Hiddensize D MLPsize Heads Params

ViT-Base 12 768 3072 12 86M

ViT-Large 24 1024 4096 16 307M

ViT-Huge 32 1280 5120 16 632M

2D-CNN 3D-CNN Semi-CNN
Model
Params Params Pre-Trained Params Total Params

VGG-16 1347 M 179.1 M 53M 822M
ResNet-18 114 M 33.3M 04M 31.7M
ResNet-34 21.5M 63.6 M 0.8 M 60.5 M
ResNet-50 239M 464 M 09M 458 M
ResNet-101 428 M 85.5M 09M 84.8 M
ResNet-152 585 M 117.6 M 14M 115.6 M
DenseNet-121 72M 114 M 0.8M 104 M
DenseNet-169 128 M 18.8 M 0.8M 179 M

Leong, M.C. et. al. (2020). Semi-CNN Architecture for Effective Spatio-Temporal Learning in Action Recognition.



Trainable position embeddings

Input patch row

Position embedding similarity
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 Similarity of position embeddings of ViT-L/32.

* Tiles show the cosine similarity between the

position embedding of the patch with the
indicated row and column and the position
embeddings of all other patches.

* Even though many positional embedding

schemes were applied, no significant difference
was found.



Position embedding scheme is not relevant

Pos. Emb. Default/Stem Every Layer Every Layer-Shared
No Pos. Emb. 0.61382 N/A N/A

1-D Pos. Emb. 0.64206 0.63964 0.64292

2-D Pos. Emb. 0.64001 0.64046 0.64022

Rel. Pos. Emb. 0.64032 N/A N/A

* No positional information:
Considering the inputs as a bag of patches.

» (Default) 1-dimensional positional embedding:
Considering the inputs as a sequence of patches in the raster order.

« 2-dimensional positional embedding:
Considering the inputs as a grid of patches in two dimensions. In this case, two sets of
embeddings are learned.

* Relative positional embeddings:
Considering the relative distance between patches to encode the spatial information as instead
of their absolute position.



Closing notes

* ViT is trained on datasets with more than 14M images it can approach or beat
state-of-the-art CNNs (ResNets or EfficientNets).

e Typically, the ViT is pretrained on the large dataset and then fine-tuned to small
ones.

* Fine-tune may be done in higher resolutions using 2D-interpolation of the pre-
trained position embeddings.

* Transformers aren’t mainstream yet.

* Main trick is intuitively, solving a puzzle of 100 pieces (patches) compared to
5000 pieces (pixels).



Updated version called: MLP-Mixer
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Tolstikhin, I. 0., et. al. (2021). Mlp-mixer: An all-mlp architecture for vision.
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