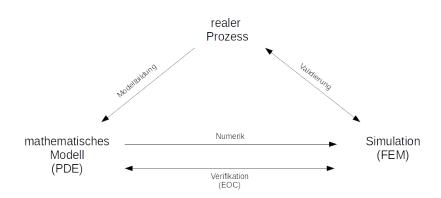

pedestrian flow

Rebekka Axthelm

22. Juli 2019



株舗機構機構機能 falsche Annahmen

A1 Eine Menge von Menschen ist ein Kontinuum, d.h. es besteht aus unendlich vielen infinitesimal kleinen Teilchen. (Unsinn)

株株が妹州・州林林村村 falsche Annahmen

- A1 Eine Menge von Menschen ist ein Kontinuum, d.h. es besteht aus unendlich vielen infinitesimal kleinen Teilchen. (Unsinn)
- A2 Wir Menschen bewegen uns wie Licht. (Quatsch)

株株が妹州・州林林村村 falsche Annahmen

- A1 Eine Menge von Menschen ist ein Kontinuum, d.h. es besteht aus unendlich vielen infinitesimal kleinen Teilchen. (Unsinn)
- A2 Wir Menschen bewegen uns wie Licht. (Quatsch)
- A3 Wir verschwinden nicht im Nichts und rematerialisieren uns nicht aus dem Nichts (Korrekt! Hier geht es um Masseerhaltung)

株株・地域州州州州州州 falsche Annahmen

A1 Kontinuum $\Omega \subset \mathbb{R}^2$:

 $\Phi: \Omega \to {\rm I\!R}$ Potential für die Laufrichtung

 $u:\Omega \to {\rm I\!R}^2$ Geschwindigkeitsfeld der Masse

 $\varrho: \Omega \to {\rm I\!R}$ Dichteverteilung der Masse

機械機構機構機構 falsche Annahmen

A1 Kontinuum $\Omega \subset \mathbb{R}^2$:

 $\Phi \,:\, \, \Omega \to {\rm I\!R} \qquad \quad \text{Potential für die Laufrichtung}$

 $u:\,\Omega
ightarrow {\rm I\!R}^2$ Geschwindigkeitsfeld der Masse

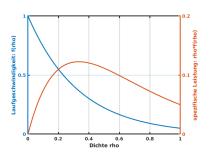
A2

$$|
abla \Phi| = rac{1}{f(arrho)}$$
 Eikonalgleichung
$$u = -f(arrho) rac{
abla \Phi}{|
abla \Phi|}$$
 Geschwindigkeitsfeld

A3

$$\varrho_t + \nabla \cdot (\varrho \, u) = 0$$
 Kontinuitätsgleichung

Geschwindigkeitsfeld oder "Das Ziel ist das Ziel"



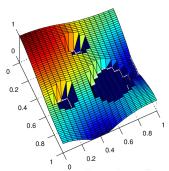
$$|
abla \Phi| = \frac{1}{f(
ho)}$$

leerer Raum: $f(\varrho = 0) = 1$

Fundamentaldiagramm = emp.

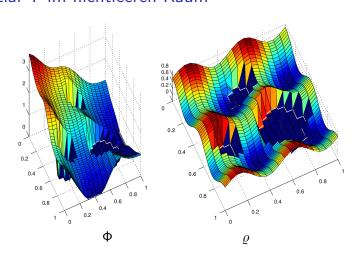
Daten oder sowas:

$$f(\varrho) = C_V \left(1 - e^{-\gamma \left(\frac{1}{\varrho} - \frac{1}{C_P}\right)}\right)$$

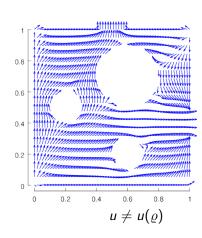


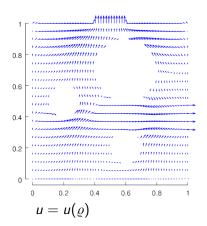
PRATITION APPROPRIEST APPRA

Potential Φ im nichtleeren Raum



Geschwindigkeitsfeld u im leeren und nichtleeren Raum





株株が株本株本・ klassisches Modell

Eikonalgl.
$$|\nabla \Phi| = \frac{1}{f(\varrho)}$$
 Geschw.-feld
$$u = -f(\varrho) \frac{\nabla \Phi}{|\nabla \Phi|}$$
 Kontinuitätsgl.
$$\varrho_t + \nabla \cdot (\varrho \, u) = 0$$

plus Randwerte

Viskositätslösung

$$|
abla\Phi|=rac{1}{f(arrho)}$$

Viskositätslösung

$$|\nabla \Phi| = \frac{1}{f(\varrho)}$$

$$(\nabla \Phi)^2 = \frac{1}{f^2(\varrho)}$$

MMMMMMMM Viskositätslösung

$$|
abla \Phi| = rac{1}{f(arrho)}$$
 $(
abla \Phi)^2 = rac{1}{f^2(arrho)}$ $-\epsilon \, \Delta \Phi_\epsilon + (
abla \Phi_\epsilon)^2 = rac{1}{f^2(arrho)} \,, \, \, \Phi_\epsilon \stackrel{\epsilon o 0}{\longrightarrow} \, \Phi$

¬Viskositätslösung

$$\Phi_{\epsilon} = -\epsilon \ln v_{\epsilon} \quad \Leftrightarrow \quad v_{\epsilon} = e^{-\frac{1}{\epsilon} \Phi_{\epsilon}}$$

¬Viskositätslösung

$$\Phi_{\epsilon} = -\epsilon \ln v_{\epsilon} \quad \Leftrightarrow \quad v_{\epsilon} = e^{-\frac{1}{\epsilon} \Phi_{\epsilon}}$$

eingesetzt in die regularisierte Eikonalgleichung führt auf die Helmholtz-Gleichung

$$\frac{1}{f^2(\varrho)}\,v_\epsilon-\epsilon\,\Delta v_\epsilon=0\,,$$

die linear und elliptisch ist.

¬Viskositätslösung

$$\Phi_{\epsilon} = -\epsilon \ln v_{\epsilon} \quad \Leftrightarrow \quad v_{\epsilon} = e^{-\frac{1}{\epsilon} \Phi_{\epsilon}}$$

eingesetzt in die regularisierte Eikonalgleichung führt auf die Helmholtz-Gleichung

$$\frac{1}{f^2(\varrho)}\,v_\epsilon-\epsilon\,\Delta v_\epsilon=0\,,$$

die linear und elliptisch ist.

Problem:

$$v_{\epsilon} \stackrel{\epsilon \to 0}{\to} 0 \quad \Rightarrow \quad \Phi_{\epsilon} \to \infty \quad ???$$

$$\frac{1}{f(\varrho)} v - \epsilon \Delta v = 0$$

$$\Phi = -\epsilon \ln v$$

$$u = -f(\varrho) \frac{\nabla \Phi}{|\nabla \Phi|}$$

$$\varrho_t - \epsilon \Delta \varrho + \nabla \cdot (\varrho u) = 0$$

plus Randwerte

schwache Formulierung

testen mit $\varphi\in\mathbb{C}_0^\infty$

$$-\Delta v = 0$$

testen mit $\varphi\in\mathbb{C}_0^\infty$

$$\Rightarrow$$

$$-\Delta v = 0$$
$$-\Delta v \varphi = 0$$

testen mit $\varphi\in\mathbb{C}_0^\infty$

$$\Rightarrow$$

$$\Rightarrow$$

$$-\Delta v = 0$$
$$-\Delta v \varphi = 0$$
$$-\int_{\Omega} \Delta v \varphi \, dx = 0$$

testen mit $\varphi \in \mathbb{C}_0^\infty$

$$\begin{aligned}
-\Delta v &= 0 \\
-\Delta v \varphi &= 0
\end{aligned}$$

$$\Rightarrow \qquad \qquad -\int_{\Omega} \Delta v \varphi \, dx &= 0$$

$$\Leftrightarrow \qquad \qquad -\int_{\Omega} \nabla \cdot (\nabla v \varphi) - \nabla v \nabla \varphi \, dx &= 0$$

PROPERTY APPRIATE SECTION OF THE SEC

testen mit $\varphi \in \mathbb{C}_0^\infty$

$$-\Delta v = 0$$

$$-\Delta v \varphi = 0$$

$$\Rightarrow \qquad -\int_{\Omega} \Delta v \varphi \, dx = 0$$

$$\Leftrightarrow \qquad -\int_{\Omega} \nabla \cdot (\nabla v \varphi) - \nabla v \nabla \varphi \, dx = 0$$

$$\Leftrightarrow \qquad -\int_{\Omega} \nabla v \cdot \nu \varphi \, do_{x} + \int_{\Omega} \nabla v \nabla \varphi \, dx = 0$$

$$\Leftrightarrow \qquad -\int_{\partial\Omega} \nabla v \cdot \nu \varphi \, do_{x} + \int_{\Omega} \nabla v \nabla \varphi \, dx = 0$$

thinking the sten mit $\varphi \in \mathbb{C}_0^\infty$

Wir suchen also ein $v \in X$ und $\varrho \in Y$ mit

$$\int_{\Omega} \frac{1}{f(\varrho)} \, v \, \varphi \, dx + \epsilon \int_{\Omega} \nabla v \, \nabla \varphi \, dx = 0$$

$$\int\limits_{\Omega} \varrho_t \varphi \ dx + \int\limits_{\Omega} \nabla \varrho \cdot \nabla \varphi \ dx + \epsilon \int\limits_{\Omega} \varrho \ u \cdot \nabla \varphi \ dx + \ldots_{\text{Randintegrale}} = 0$$

Variationsformulierung/ Energieminimierung

$$I(v) = \frac{1}{2} \int\limits_{\Omega} \nabla v^2 \ dx - \int\limits_{\Omega} f \ v \ dx$$

Gesucht ist u mit $I(u) = \min_{v} I(v)$.

Klassisches Problem/ Eulergleichungen

$$-\Delta u = f$$

schwache Form

$$\int\limits_{\Omega} \nabla u \nabla \varphi \ dx = \int\limits_{\Omega} f \varphi \ dx$$

Existenz einer Lösung

Die Minimalfolge ist eine Cauchy-Folge, die nur im Banachraum konvergiert.

Die Vollständigkeit kriegen wir mit dem Lebesgue-Integral!!!

Die Energieabschätzung zeigt, mit welcher Norm kontrolliert werden kann, also in welchem Raum eine Lösung zu suchen ist.

Hier ist das H1,2

Regularität

Die Lösung u (C²) ist Minimum von I aber ist ein Minimum von I auch Lösung des kl. Problems?

Eine Lösung der schwachen Form ist auch Minimum von Lund

Form ist auch Minimum von I und umgekehrt.

... in der Zeit

Euler:
$$\varrho^k = \varrho(t_k, \cdot)$$

$$\varrho_t^{k+1} \approx \frac{\varrho^{k+1} - \varrho^k}{t_{k+1} - t_k}$$

₹\$8\$4 ##\$\$\$\$8 #**\$**\$\$\$\$\$\$

... in der Zeit

Euler: $\varrho^k = \varrho(t_k, \cdot)$

$$\varrho_t^{k+1} \approx \frac{\varrho^{k+1} - \varrho^k}{t_{k+1} - t_k}$$

Führt auf das zeitdiskrete schw. Modell: $\delta = t_{k+1} - t_k$

$$\int_{\Omega} \varrho_t^{k+1} \varphi \, dx + \epsilon \int_{\Omega} \nabla \varrho^{k+1} \cdot \nabla \varphi \, dx
+ \int_{\Omega} \varrho^{k+1} \, u^m \cdot \nabla \varphi \, dx + \ldots = \delta \int_{\Omega} \varrho^k \varphi \, dx$$

Und insgesamt führt das auf

... in der Zeit

Startwert
$$\varrho^0 \in Y$$
 gegeben. $k=0,\ldots$:
$$\int\limits_{\Omega} \frac{1}{f(\varrho^k)} \, v^k \, \varphi \, \, dx + \epsilon \int\limits_{\Omega} \nabla v^k \, \nabla \varphi \, \, dx = 0$$

$$\Phi^k = -\epsilon \, \ln v^k$$

$$u^k = -f(\varrho^k) \, \frac{\nabla \Phi^k}{|\nabla \Phi^k|}$$

$$\int\limits_{\Omega} \varrho^{k+1} \varphi \, \, dx + \epsilon \int\limits_{\Omega} \nabla \varrho^{k+1} \cdot \nabla \varphi \, \, dx + \int\limits_{\Omega} \varrho^{k+1} \, u^k \cdot \nabla \varphi \, \, dx \ldots = 0$$
 plus Randwerte

₹\$8\$4.96\$6\$\$\$8.49\$\$6\$\$\$\$

... im Ort

Startwert
$$\varrho_h^0 \in Y_h$$
 gegeben. $k=0,\ldots$:
$$\int_{\Omega} \frac{1}{f(\varrho_h^k)} \, v_h^k \, \varphi_h \, \, dx + \epsilon \int_{\Omega} \nabla v_h^k \, \nabla \varphi_h \, \, dx = 0$$

$$\Phi_h^k = -\epsilon \, \ln v_h^k$$

$$u_h^k = -f(\varrho_h^k) \, \frac{\nabla \Phi_h^k}{|\nabla \Phi_h^k|}$$

$$\int_{\Omega} \varrho_h^{k+1} \varphi_h \, \, dx + \epsilon \int_{\Omega} \nabla \varrho_h^{k+1} \cdot \nabla \varphi_h \, \, dx + \int_{\Omega} \varrho_h^{k+1} \, u_h^k \cdot \nabla \varphi_h \, \, dx \ldots = 0$$
 plus Randwerte

Ziel: Aufstellen eines LGS, dazu rechnet man in Koordinatenvektoren: $v_h(x) = \sum_i v_i \varphi_i(x)$

Ziel: Aufstellen eines LGS, dazu rechnet man in

Koordinatenvektoren: $v_h(x) = \sum_i v_i \varphi_i(x)$

Problem in X: dim $X = \infty$

Ziel: Aufstellen eines LGS, dazu rechnet man in

Koordinatenvektoren: $v_h(x) = \sum_i v_i \varphi_i(x)$

Problem in X: dim $X = \infty$

Lösung: $\dim X_h < \infty \,, \,\, X_h \subseteq X \,, \,\, X_h \stackrel{_{h \, o \, 0}}{\longrightarrow} X$

Ziel: Aufstellen eines LGS, dazu rechnet man in

Koordinatenvektoren: $v_h(x) = \sum_i v_i \varphi_i(x)$

Problem in X: dim $X = \infty$

Lösung: $\dim X_h < \infty$, $X_h \subseteq X$, $X_h \stackrel{h \to 0}{\longrightarrow} X$

Frage: Wie sieht so ein X_h aus?

Ziel: Aufstellen eines LGS, dazu rechnet man in

Koordinatenvektoren: $v_h(x) = \sum_i v_i \varphi_i(x)$

Problem in X: dim $X = \infty$

Lösung: dim $X_h < \infty$, $X_h \subseteq X$, $X_h \stackrel{h \to 0}{\longrightarrow} X$

Frage: Wie sieht so ein X_h aus?

Antwort: Je nach X, gewünschter Approximationsgüte und

Rechenaufwand

schwache Form diskret

$$\int\limits_{\Omega_h} \nabla u_h \nabla \varphi_h \ dx = \int\limits_{\Omega_h} f \varphi_h \ dx$$

$$u_h(x) = \sum_{i=1}^N u_i \varphi_i(x)$$

$$u_h \in X_h \subseteq X$$
 mit $X_h \stackrel{h \to 0}{\longrightarrow} X$

$$||u - u_h||_X \le C h^{\alpha}$$

$$\mathbf{u}^T \mathbf{A} = \mathbf{b}$$

Basis von X_h Koordinatenvektor

Konsistenz des Verfahrens

a-priori Fehlerrechnung

LGS (oder auch NLGS)

- dünn besetzte Matrix
- schnell berechnet
- · schlecht konditioniert

EOC - Kontinuitätsgleichung

$$X = H^{1.2}(\Omega), \ X_h = \{ v \in C^0(\Omega) \mid v|_T \in \mathbb{P}_1 \}$$

Praxis

h	$ u - u_h _{L^2}$	EOC	$ u - u_h _{H^1}$	EOC
4.81e-02	2.51e-05	2.42	2.71e-03	1.13
2.80e-02	6.76e-06	1.99	1.47e-03	1.02
1.38e-02	1.65e-06	2.03	7.15e-04	1.03
6.92e-03	4.06e-07	2.01	3.52e-04	1.01

Theorie

$$||u - u_h||_{L^2(\Omega)} \le C h^2$$

 $||u - u_h||_{H^{1,2}(\Omega)} \le C h$

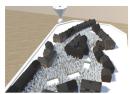
₹\$8\$\$ ##\$\$\$\$\$\$ #**\$**\$\$\$\$\$\$\$\$\$

KTI Projekt C-Source Validierung

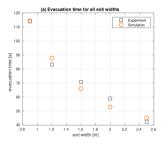
IBH Projekt WebUI (Sebastian)

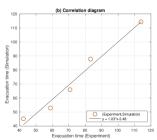
TP Systeme MacOS Linux Windows Android iOS

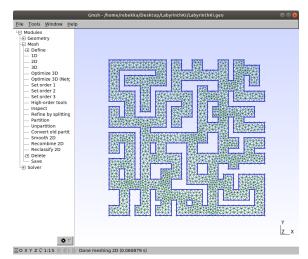
TP virtual Reality KI-Tag



Experimentdaten vom Forschungszentrum Jülich







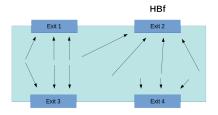
Ausgang, der kein Ausgang ist ...

... oder die Konzertbühne.

MMMMMMMMM Ziele

Der nächstgelegene Ausgang ist nicht zwingend der favorisierte.

- Bahnhof
- "Wir verlassen den Raum durch die Tür, durch die wir ihn betreten haben" (?)



株開始機構機構開始 multidirectional flow

$$|\nabla \Phi_i| = \frac{1}{f_i(\bar{\varrho})}$$

$$u_i = f_i(\bar{\varrho}) \frac{\nabla \Phi_i}{|\nabla \Phi_i|}$$

$$\varrho_{i,t} - \dots = 0$$

- Verschiedene Ziele
- Verschiedene Eigenschaften (betrunken oder nicht)

akut: Bier- oder Cocktailbar?

Bierstand: geringe Aufenthaltsdauer

Cocktailstand: lange Aufenthaltsdauer

Störung: bewegte Hindernisse

