

HT W G

Hochschule Konstanz Technik, Wirtschaft und Gestaltung

VDI

Bundesministerium für Bildung und Forschung

Unsupervised Machine Learning in Optical Surface Inspection

Brown-Bag-Seminar 2019, IOS, Konstanz

Matthias Hermann, HTWG-Konstanz, Institute for Optical Systems Promotionsstart: 11/2017

Advisors:

Prof. Dr. Georg Umlauf, HTWG-Konstanz, Institute for Optical Systems Prof. Dr. Bastian Goldlücke, Universität Konstanz, Computer Vision/Image Analysis

BMBF-FZ: 13N14540

Optical surface inspection I

Source: Silicon Software, Wintriss Engineering, Weco, Kuka

Optical surface inspection II

Source: Silicon Software, Wintriss Engineering, Weco, Kuka

Microscopic and macroscopic applications

Source: creaform3d, Zeisscreaform3d, Zeiss

200 nm

Typical applications of surface inspection

- Quality control in manufacturing
- Automation
- Medical imaging e.g. mammography
- Material sciences
- Reconstruction and repairing of things

My Application: Digital Print Inspection

Inspecting digital printed wooden decors

20 cm 512 x 512 px (~ 2 x 2 cm)

Recorded Example

Printing failure through nozzle head fault

Recorded Example II

Printing failure through nozzle head fault

Problem statement

"Detection of texture independent surface defects and digital printing errors in multi spectral color and depth images"

Classical approaches

Error models

- Edge amd blob detectors
- Statistical methods
- Color spaces
- Feature spaces

>> Creativity!

Lighting models

- Lights and lasers
- Reflectance
- Registration

. . .

>> Engineering!

Classification

- Human expert

- Machine learning

- ...

>> Data labeling!

Another approach: Reference modeling and anomaly detection

Machine Learning paradigms and applications

Machine Learning paradigms and applications

What is data and what is a "model"?

Supervised Models

Data: (x, y) x is data, y is label

Goal: Learn a function to map x → y Examples: Classification, regression, approximation, object detection, etc.

Unsupervised Models

Data: x Just data, no labels!

Goal: Learn some underlying/latent structure/representation of the data

Examples:

- Clustering, dimensionality reduction, density estimation,
- featuré/kernel/métric learning, etc.

Represent data as high dimensional vectors or (coll.) points

Example (generative) models and samples

p_{bedrooms}(x)

p_{faces}(x)

 $p_{bags}(x | z)$

Model Zoo in unsupervised machine Learning

Example Algorithm: Gaussian approximation

$$p_{model}(\mathbf{x}) = N(\mu, \Sigma)$$

a.k.a. multivariate Gaussian.

The green ellipse indicates the isocountour line for the first standard deviation (σ)

Example Algorithm: Gaussian approximation

$$p_{model}(x) = N(\mu, \Sigma)$$

Adding new datapoints to the model:

- Red data points are outliers,
- Green data poitns are inliers

in terms of likelihood under the model.

Example algorithm: k-nearest neigbors

$$p_{\text{model}}(\mathbf{x}) = \frac{1}{K} \sum_{K} N(\mu(x)_{n}, \Sigma(x)_{n})$$

Modelling a gaussian distribution around each data point.

Example algorithm: k-nearest neigbors

$$p_{\text{model}}(\mathbf{x}) = \frac{1}{K} \sum_{K} N(\mu(x)_{n}, \Sigma(x)_{n})$$

Adding new datapoints to the model:

- Red data points are outliers,
- Green data points are inliers

in terms of average distance (e.g. likelihood) to K neighbors.

But, major issues with high dimensional data

Relative weight of center partition decreases with higher dimensions.

>> In high dimensional euclidean spaces a sphere has almost all of its volume on the surface.

>> **Curse of dimensionality!** Masuring distances in higher dimensions does not work as expected (Concentration of measure principle)!

Volume measures depend on Dimension n

Diameters have surprising effects, too

Example algorithm: Using neural networks

$$p_{\text{model}}(\mathbf{x}) = \frac{1}{K} \sum_{K} N(\varphi_{\theta}(x), \varphi_{\theta}(x))$$

with neural network $\varphi(x)$. E.g. $\varphi(x) = \tanh(Wx + b)$.

- Neural networks may give better non-linear representations for data to fix dimensionality issues.
- Neural networks are parametric models that can handle 100k+ data samples.

System design

Sampling rate: 80 kHz (14 GBit/s per camera, 144 GBit/s parallelized data rate)

Next steps

- Collecting more validation real world data.
- Integrating model into FPGA.
- Extending detection model to more experimental methods.
- Extending data processing model to unstructured geometric data.

Thanks for your attention!

Matthias Hermann

Hochschule Konstanz Institute for Optical Systems <u>Matthias.hermann@htwg-konstanz.de</u> www.ios.htwg-konstanz.de

Literature

- H. Bay; T. Tuytelaars & L. van Gool (2006). "SURF: Speeded Up Robust Features". Proceedings of the 9th European Conference on Computer Vision, Springer LNCS volume 3951, part 1. pp. 404–417.
- Kim, M. S., Chen, Y. R., Cho, B. K., Chao, K., Yang, C. C., Lefcourt, A. M., & Chan, D. (2007). Hyperspectral reflectance and fluorescence line-scan imaging for online defect and fecal contamination inspection of apples. *Sensing and Instrumentation for Food Quality and Safety*, 1(3), 151.
- Tsai, I. S., & Hu, M. C. (1996). Automatic inspection of fabric defects using an artificial neural network technique. *Textile Research Journal*, 66(7), 474-482.
- Xie, X. (2008). A review of recent advances in surface defect detection using texture analysis techniques. *ELCVIA: electronic letters on computer vision and image analysis*, 7(3), 1-22.
- Aiger, D., & Talbot, H. (2012). The phase only transform for unsupervised surface defect detection. In *Emerging Topics In Computer Vision And Its Applications* (pp. 215-232).
- Zimek, A., Schubert, E., & Kriegel, H. P. (2012). A survey on unsupervised outlier detection in high-dimensional numerical data. *Statistical Analysis and Data Mining: The ASA Data Science Journal*, *5*(5), 363-387.
- Marimont, R.B.; Shapiro, M.B. (1979). "Nearest Neighbour Searches and the Curse of Dimensionality". IMA J Appl Math. 24(1): 59–70. doi:10.1093/imamat/24.1.59.
- Aggarwal, C. C., Hinneburg, A., & Keim, D. A. (2001, January). On the surprising behavior of distance metrics in high dimensional space. In International conference on database theory (pp. 420-434). Springer, Berlin, Heidelberg.
- Raj, B. (2017). Introduction to Deep Learning. *Carnegie Mellon's School of Computer Science*.

Recap PCA (Principal Component Analysis)

Wikipedia.org

Recap PCA (Limitations I)

- No probabilistic model for observed data.
- Computation-intensive variance-covariance matrix needs to be calculated.
- Does not work properly for outlying data and incomplete data.

Recap PCA (Limitations II)

- PCA (and autoencoders) are a discriminative models:
 - Varying hidden layer value z only generates data along the learned manifold
 - Any input will result in an output along learned manifold

Probabilistic PCA (Motivation)

- Maximum-likelihood estimates can be computed for elements associated with principle components.
- Conventional PCA will assign low reconstruction cost to data points that are close to the principal subspace even if they lie far away from training data.
- Addresses limitations of regular PCA (and autoencoders).

But much more important!

- Autoencoders can be viewed as non-linear PCA
- Variational autoencoders can be viewed as non-linear PPCA (special case of Factor Analysis)

Probabilistic PCA (Model)

• Generative model: Assumes that data are generated from real values.

Where $\boldsymbol{W} \in \mathbb{R}^{D \times L}$, $\boldsymbol{\Psi} \in \mathbb{R}^{D \times D}$, $\boldsymbol{\Psi}$ is diagonal, in PPCA further $\sigma^2 \mathbf{I}$

Bishop, 2006

Typical way (Marginal distribution of observed x_i)

$$p(x_{i}|W,\mu,\Psi) = \int \mathcal{N}(Wz_{i}+y,\Psi)\mathcal{N}(z_{i}|\mu_{o},\Sigma_{0})dz_{i}$$

Find: $p(x_{i}|\widehat{W},\widehat{\mu},\Psi) = \mathcal{N}(x_{i}|\widehat{\mu},\Psi+\widehat{W}\widehat{W}^{T})$
where $\widehat{\mu} = W\mu_{0} + \mu$ and $\widehat{W} = W\Sigma_{0}^{\frac{1}{2}}$ and let $p(z_{i}) = \mathcal{N}(z_{i}|0,I)$

Solution path:

- ELBO!
- Proof ELBO is tight!
- <mark>EM-Algorithm!</mark>

Bishop, 2006

Another Perspective (Log-Likelihood)

Consider the log-likelihood of the marginal distribution with latent variable z and model parameters Θ:

$$\ell(\theta) = \sum_{i=1}^{N} \log p(x_i|\theta) = \sum_{i=1}^{N} \log \int p(x_i, z_i|\theta) \, dz_i$$

Problem: We have a log outside of the integral which would cause inefficient integration per datapoint.

Another Perspective (Expected Log-Likelihood)

Better would be observing z_i : $\ell(\theta) = \sum_{i=1}^{N} \log p(x_i, z_i | \theta) \quad (complete \log - likelihood)$

Take Expectation!

$$\mathbb{E}_{q(z)}[\ell(\theta)] = \int q(z_i)\ell(\theta)dz_i = \sum_{i=1}^N \int q(z_i)\log p(x_i, z_i|\theta)dz_i$$

- Finding the q that maximizes this is the E step of EM
- Finding the O that maximizes this is the M step of EM

Approach (Expected Log-Likelihood)

- $argmax_{\theta} \mathbb{E}_{q(z)}[\log p(X, Z | \theta)] = argmax_{\theta} \mathbb{E}_{q(z)}[\log p(X | Z, \theta)] + \mathbb{E}_{q(z)}[\log p(z)] \longleftarrow \text{,,Does not depend on } \Theta''$
- 1) Compute optimal q-values (i.e. "Project X into Z-space")
- 2) Sample "optimal q-values"
- 3) Optimize for Θ
- Is still, EM-Algorithm

Approach (Expected Log-Likelihood)

- $argmax_{\theta} \mathbb{E}_{q(z)}[\log p(X, Z | \theta)] = argmax_{\theta} \mathbb{E}_{q(z)}[\log p(X | Z, \theta)] + \mathbb{E}_{q(z)}[\log p(z)] \longleftarrow \text{,Does not depend on } \Theta''$
- 1) Compute optimal q-values (i.e. "Project X into Z-space")
- 2) Sample "optimal q-values"
- 3) Optimize for Θ
- → *Is still, EM-Algorithm*

Final derivation for completeness:

$$= \operatorname{argmax}_{W,\Psi} - \frac{N}{2} \log \det(\Psi) - \sum_{i=1}^{N} \left(\frac{1}{2} \boldsymbol{x}_{i}^{T} \Psi^{-1} \boldsymbol{x}_{i} - \boldsymbol{x}_{i}^{T} \Psi^{-1} W \mathbb{E}_{q^{(t)}(\boldsymbol{z}_{i})}[\boldsymbol{z}_{i}] + \frac{1}{2} \operatorname{tr} \left(W^{T} \Psi^{-1} W \mathbb{E}_{q^{(t)}(\boldsymbol{z}_{i})}[\boldsymbol{z}_{i} \boldsymbol{z}_{i}^{T}] \right) \right)$$

Bishop, 2006; Raj, 2017

Example (1 dimensional latent space)

The plot recovers (up to rotation) the original 2D data quite well.

mxfusion.io

Further reading...

a) Assume a generative model with a latent variable distributed according to some distribution $p(z_i)$

b) The observed variable is distributed according to a conditional distribution $p(x_i | z_i, \theta)$

Further reading...

- a) We also create a weighting distribution $q(z_i | x_i, \phi)$
- b) This will play the same role as $q(z_i)$ in the EM algorithm, as we will see.
- c) But no it depends on the input x_i

See you next time, Variational Autoencoder