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Optical surface inspection I

Foils inspection

Metal inspection

Metal inspection
Foils inspection

Source: Silicon Software, Wintriss Engineering, Weco, Kuka



Optical surface inspection II

Wood inspectionFood inspectionCar inspection

Source: Silicon Software, Wintriss Engineering, Weco, Kuka



Microscopic and macroscopic applications

Li-Ion-accu through microsocope Airplane inspection with structured light scanner

Source: creaform3d, Zeisscreaform3d, Zeiss



Typical applications of surface inspection

• Quality control in 
manufacturing

• Automation

• Medical imaging e.g. 
mammography

• Material sciences

• Reconstruction and repairing
of things

Metal defects

Source: creaform3d, Zeisscreaform3d, Zeiss



My Application: Digital Print Inspection

Template store (wood decors) Color checkboard for printing team



3 x 3 m

20 cm

512 x 512 px ( ~ 2 x 2 cm)

Inspecting digital printed wooden decors
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Error-free reference Printing failure through nozzle head fault



Error-free reference Printing failure through nozzle head faultR
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Problem statement

„Detection of texture independent
surface defects and digital printing
errors in multi spectral color and 
depth images“



Classical approaches

Error models

- Edge amd blob
detectors

- Statistical methods

- Color spaces

- Feature spaces

Lighting models

- Lights and lasers

- Reflectance 

- Registration

- …

Classification

- Human expert

- Machine learning

- …

>> Creativity! >> Engineering! >> Data labeling!



Another approach: 
Reference modeling and anomaly detection

A) Find a good model for
the reference (error-free) data.

B) Detect deviations to the model!

REFERENCE MODEL DeviationUnsupervised
machine learning



Machine Learning paradigms and applications

Figure adapted from towardsdatascience.com



Machine Learning paradigms and applications

Figure adapted from towardsdatascience.com



What is data and what is a „model“?

Supervised Models

Data: (x, y)
x is data, y is label

Goal:
Learn a function to map x → y

Examples:

Classification, regression, 
approximation, object detection, etc.

Unsupervised Models

Data: x
Just data, no labels!

Goal: Learn some underlying/latent 
structure/representation of the data

Examples:

Clustering, dimensionality reduction, 
density estimation, 
feature/kernel/metric learning, etc.



Represent data as high dimensional vectors or
(coll.) points

Unsupervised
machine learning

Reference data ~ pdata(x) Model data ~ pmodel(x)

Learn a pmodel(x) similar to pdata(x)

ℝn_pixels



Example (generative) models and samples

pbedrooms(x) pfaces(x) pbags(x|z)



Model Zoo in unsupervised machine Learning

Data models/representations

Explicit density

Implicit density

Markov chain

Generative stochastic networks (GSN)

Approximate densityTractable density

Figure adapted from Ian Goodfellow, Turotial on GANS, 2017

Variational / Mean-Field

Markov chain

Direct

GAN

Boltzmann machinesAutoencoder

Fully Visible Belief Nets
- PixelRNN
- MADE

Nonlinear ICA
Gaussian Mixture Model



Example Algorithm: Gaussian approximation

pmodel(x) = 𝑁 𝜇, 𝛴

a.k.a. multivariate Gaussian.

The green ellipse indicates
the isocountour line for the
first standard deviation (𝜎).



Example Algorithm: Gaussian approximation

pmodel(x) = 𝑁 𝜇, 𝛴

Adding new datapoints to the
model:

- Red data points are outliers,
- Green data poitns are inliers

in terms of likelihood under the model.



Example algorithm: k-nearest neigbors

pmodel(x) =
1

𝐾
σ𝐾𝑁 𝜇(𝑥)𝑛, 𝛴(𝑥)𝑛

Modelling a gaussian distribution around
each data point.

ℝn_pixels



Example algorithm: k-nearest neigbors

pmodel(x) =
1

𝐾
σ𝐾𝑁 𝜇(𝑥)𝑛, 𝛴(𝑥)𝑛

Adding new datapoints to the
model:

- Red data points are outliers,
- Green data points are inliers

in terms of average distance (e.g. likelihood) 
to K neighbors.

ℝn_pixels



But, major issues with high dimensional data

Relative weight of center partition decreases with higher dimensions.

1/3 1/9 1/27

>> Curse of dimensionality! Masuring distances in higher dimensions
does not work as expected (Concentration of measure principle)!

>> In high dimensional euclidean spaces a sphere has almost all of its volume on the surface.



Volume measures depend on Dimension n



Diameters have surprising effects, too

The enclosed sphere touches the unit-box…
..and even breaks through!

For dimensions < 262: Vsphere < Vcube



Example algorithm: Using neural networks

pmodel(x) =
1

𝐾
σ𝐾𝑁 𝜑𝜭 (𝑥), φ𝜭(𝑥)

𝑤𝑖𝑡ℎ 𝑛𝑒𝑢𝑟𝑎𝑙 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝜑 𝑥 .
𝐸. 𝑔. 𝜑 𝑥 = tanh(𝑊𝑥 + 𝑏).

• Neural networks may give better
non-linear representations for data
to fix dimensionality issues.

• Neural networks are parametric models
that can handle 100k+ data samples.

ℝdim_neural_network



System design

Sampling rate: 80 kHz (14 GBit/s per camera, 144 GBit/s parallelized data rate)

Image capturing

Error detection

Model learning

Decor printing
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TPR: 1.0, FPR: 0.01
Red is error, orange is false positve

TPR: 0.9, FPR: 0.08
Red is error, gray is false negative

Real world example Lab example



Next steps

• Collecting more validation real world data.

• Integrating model into FPGA.

• Extending detection model to more experimental methods.

• Extending data processing model to unstructured geometric data.
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Recap PCA (Principal Component Analysis)

ℝinput

Wikipedia.org

𝑤1 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑤 =1 𝑋𝑤
2
= 𝑤𝑇𝑋𝑇𝑋𝑤

𝑤2 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑤 =1 (𝑋 − 𝑋𝑤1𝑤1
𝑇)𝑤

2

𝑤3 = …

Yields Transformation 𝑇 = 𝑋𝑊 𝑤𝑖𝑡ℎ 𝑊 𝑝 × 𝑝 𝑎𝑛𝑑 𝑇 𝑛 × 𝑝
p1p2

Maximizing variance of the projected data X



Recap PCA (Limitations I )

• No probabilistic model for observed data.

• Computation-intensive variance-covariance matrix needs to be
calculated.

• Does not work properly for outlying data and incomplete data.

Bishop, 1999



Recap PCA (Limitations II )

• PCA  (and autoencoders) are a discriminative models:
• Varying hidden layer value z only generates data along the learned manifold

• Any input will result in an output along learned manifold

Raj, 2017



Probabilistic PCA (Motivation)

• Maximum-likelihood estimates can be computed for elements associated
with principle components.

• Conventional PCA will assign low reconstruction cost to data points that are
close to the principal subspace even if they lie far away from training data.

• Addresses limitations of regular PCA (and autoencoders).

But much more important!

• Autoencoders can be viewed as non-linear PCA

• Variational autoencoders can be viewed as non-linear PPCA (special case of 
Factor Analysis)

Bishop, 2006



Probabilistic PCA (Model)

• Generative model: Assumes that data are generated from real values. 
latent variables.

Bishop, 2006

𝑝 𝑧𝑖 = 𝒩(𝑧𝑖|𝜇0, Σ𝑜) 𝑝 𝑥𝑖|𝑧𝑖 ,𝑊, 𝜇, Ψ = 𝒩(𝑊𝑧𝑖 + 𝜇,Ψ)

𝑊ℎ𝑒𝑟𝑒 𝑾 𝝐 ℝ𝐷×𝐿, 𝚿 𝝐 ℝ𝐷×𝐷, 𝚿 is diagonal, in PPCA further σ2I

„Compared to PCA, we get a distribution“  

„No we can sample latent values.“  



Typical way (Marginal distribution of observed xi)

𝑝 𝑥𝑖|𝑊, 𝜇,Ψ = න𝒩 𝑊𝑧𝑖 + 𝑦,Ψ 𝒩 𝑧𝑖 𝜇𝑜, Σ0)𝑑𝑧𝑖

Find: 𝑝 𝑥𝑖| 𝑊, ො𝜇,Ψ = 𝒩 𝑥𝑖 ො𝜇,Ψ + 𝑊 𝑊𝑇)

𝑤ℎ𝑒𝑟𝑒 ො𝜇 = 𝑊𝜇0 + 𝜇 𝑎𝑛𝑑 𝑊 = 𝑊Σ0

1
2 𝑎𝑛𝑑 𝑙𝑒𝑡 𝑝 𝑧𝑖 = 𝒩(𝑧𝑖|0, 𝐼)

Solution path:

- ELBO!

- Proof ELBO is tight!

- EM-Algorithm!
Bishop, 2006



Another Perspective (Log-Likelihood)

Consider the log-likelihood of the marginal distribution with latent 
variable z and model parameters Θ:

ℓ 𝜃 =

𝑖=1

𝑁

log 𝑝 𝑥𝑖 𝜃) =

𝑖=1

𝑁

logන𝑝 𝑥𝑖 , 𝑧𝑖 𝜃) 𝑑𝑧𝑖

Problem: We have a log outside of the integral which would cause
inefficient integration per datapoint.

Bishop, 2006



Another Perspective (Expected Log-Likelihood)

Better would be observing zi: 

ℓ 𝜃 =

𝑖=1

𝑁

log 𝑝 𝑥𝑖 , 𝑧𝑖 𝜃) 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑙𝑜𝑔 − 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

Take Expectation!

𝔼𝑞 𝑧 ℓ 𝜃 = 𝑞 𝑧𝑖 ℓ 𝜃 𝑑𝑧𝑖 = σ𝑖=1
𝑁 𝑞 𝑧𝑖 log 𝑝 𝑥𝑖 , 𝑧𝑖 𝜃)𝑑𝑧𝑖

- Finding the q that maximizes this is the E step of EM

- Finding the Θ that maximizes this is the M step of EM

Bishop, 2006



Approach (Expected Log-Likelihood)

𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝔼𝑞 𝑧 log 𝑝(𝑋, 𝑍|𝜃)
= 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝔼𝑞 𝑧 log 𝑝(𝑋|𝑍, 𝜃) + 𝔼𝑞 𝑧 log 𝑝 𝑧

1) Compute optimal q-values (i.e. „Project X into Z-space“)

2) Sample „optimal q-values“

3) Optimize for Θ

➔Is still, EM-Algorithm

Bishop, 2006; Raj, 2017

„Does not depend on Θ“  



Approach (Expected Log-Likelihood)

𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝔼𝑞 𝑧 log 𝑝(𝑋, 𝑍|𝜃)
= 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝔼𝑞 𝑧 log 𝑝(𝑋|𝑍, 𝜃) + 𝔼𝑞 𝑧 log 𝑝 𝑧

1) Compute optimal q-values (i.e. „Project X into Z-space“)

2) Sample „optimal q-values“

3) Optimize for Θ

➔Is still, EM-Algorithm

Bishop, 2006; Raj, 2017

„Does not depend on Θ“  

Final derivation for completeness:



Example (1 dimensional latent space)

mxfusion.io

The plot recovers (up to rotation) the original 2D data quite well.

Training data Samples from the model 𝑥𝑖 ~ 𝑁 𝑊𝑧 + 𝜇, 0



Further reading…

a) Assume a generative model with a latent 
variable distributed according to some 
distribution 𝑝(𝑧𝑖) 

b) The observed variable is distributed 
according to a conditional distribution 
𝑝(𝑥𝑖 |𝑧𝑖 , 𝜃)

𝑝 𝑧𝑖



Further reading…

a) We also create a weighting distribution 
𝑞(𝑧𝑖 |𝑥𝑖 ,𝜙) 

b) This will play the same role as 𝑞(𝑧𝑖) in the 
EM algorithm, as we will see.

c) But no it depends on the input xi

See you next time, Variational Autoencoder


