

LLMs a Deep Dive into the mechanic Brown Bag Seminar IOS Oliver Dürr

Principles of ChatGPT

Describe your technology in one sentence.

I am a Generative Language model based on the transformer architecture that uses self-attention mechanisms and is trained with maximum likelihood principle to predict the next token in a sequence of tokens and generate new text.

Token = Part(s) of Word

The Task*

Describe your technology in one sentence.

I am a Generative Language model based on the transformer architecture that uses self-attention mechanisms and is trained with maximum likelihood principle to predict the next token in a sequence of tokens and generate new text.
*Tokens later.

Generative Language Models: "predict next token"

Generative Language models:
Like you pressing (most) probable suggestion

Describe your technology in one sentence.

I am a Generative Language model based on the transformer architecture \square that uses self-attention mechanisms and is trained with maximum likelihood principle to predict the next token in a sequence of tokens and generate new text.

Steps 1: Describe your technology in one sentence. \rightarrow ।
Steps 2: Describe your technology in one sentence. I \rightarrow am
Steps 3: Describe your technology in one sentence. I am \rightarrow a
Steps 4: Describe your technology in one sentence. I am a \rightarrow generative

Step 36 Describe your technology in one sentence. I am a ... new text. \rightarrow END

Sampling Repeated

Prompt
The weather is really nice today. I'm thinking about going for a

10 Calls to ChatGPT, resulting in different results.

Probabilities for next word

Prompt
The weather is really nice today. I'm thinking about going for a

Training / Maximum Likelihood Prinziple

Describe your technology in one sentence.

I am a Generative Language model based on the transformer architecturethat uses self-attention mechanisms and is trained with maximum likelihood principle to predict the next token in a sequence of tokens and generate new text.

LLM are probabilistic models

Probability for y

Quiz: Number of parameters in GTP-3.5?
Quiz: Write this in math

$$
p_{\boldsymbol{\theta}}(y \mid \boldsymbol{x})
$$

Training: To predict the next token

- Training data:
- "Whole Internet": arXiv + StackOverflow + ...
- LLaMMa*: 1T (1E12) Token
- Take samples
- Take a text example where to know the answer
- The weather is really nice today. I'm thinking about going for a walk
- Use input x="The weather is really nice today. I'm thinking about going for a"
- Observed value $y=$ "walk"
- Output of model $p_{\boldsymbol{\theta}}(y \mid \boldsymbol{x})$

- Tune the model so that p_{θ} ("walk" $\mid x$) is high

Training: Loss Function = Likelihood of Data

Quiz:

- What is the worst model? What is $p_{\boldsymbol{\theta}}(y=$ " walk" $\mid \boldsymbol{x})=$???
- $p_{\theta}\left(y=\right.$ "walk" $\left.\mid x_{i}\right)=0$
- $\log 0_{+}=-\infty$
- What is the best model (for that single example)?
- $p_{\theta}\left(y=\right.$ "walk" $\left.\mid x_{i}\right)=1$
- $\log 1=0$
- For that single example with observation y_{i} the following is a good loss
- $-\log p_{\theta}\left(y_{i} \mid x_{i}\right)$
- Minimization of that loss averaged over a batch of 4 M tokens (negative log likelihood, NLL)
- minimizing the NLL = maximizing the likelihood

Tokenization and Embedding

Describe your technology in one sentence.

I am a Generative Language model based on the transformer architecture that uses self-attention mechanisms and is trained with maximum likelihood principle to predict the next token in a sequence of tokens and generate new text.

Tokenization Deep Learning need numbers

- Deep Learning system need numbers
- $x_{i}=$ "The weather is really nice today. I'm thinking about going for a"
- Simple Tokenization(ASCII)

- $x_{i}=$ "The weather is really nice today. I'm thinking about going for a"
- $x_{i}=(84,104,101,32,119, \ldots, 32,97)$
- And what with "Köche präferieren süße Schokolädentörtchen."

Tokens in LLM

ChatGPT works with tokens not with words．It has 50257 different tokens．
https：／／platform．openai．com／tokenizer

Mein Luftkissenfahrzeug ist voller Aale

Emergence or stochastical parrot $\$$

差不多

Mein Luftkissenfahrzeug ist voller Aale

Emergence or stochastical parrot
02不多
［17597，106，16937，43240］

English is coded shorter（since most of text is in English for BPE Algorithm）
Fun Fact：＂spell lollipop backwards＂used to trick ChatGPT（before 25 Sep Version）

Understand Text as a Sequence of Vectors

- After Tokenization and Embedding Text looks like

[791, 9282, 374, 2216, 6555, 3432, 13, 358, 2846, 7422, 922, 2133, 369, 264, 198]
Tokens are common sequences of characters found in text.
In DL we usually take batches the primary object of interest a tensors of size 3 with (B, T, C) dimensions

The architecture

Describe your technology in one sentence.

I am a Generative Language model based on the transformer architecture that uses self-attention mechanisms and is trained with maximum likelihood principle to predict the next token in a sequence of tokens and generate new text.

Sources for Transformer

- Live Codeing (and explanation) Andrej Karparthy nano-GPT https://youtu.be/kCc8FmEb1nY

Let's build GPT: from scratch, in code, spelled out.
Andrej Karpathy
3,1 Mio. Aufrufe • vor 9 Monaten

Further Resources

- CS25 Andrej Karparty Introduction to Transformers
- Nice intuition with message parsing https://www.youtube.com/watch?v=XfpMkf4rD6E
- Lennart Svensson: https://youtu.be/0SmNEp4zTpc
- Good intuition (weighted average, mathematical sound)
- Ava Soleimany: https://www.youtube.com/watch?v=QvkQ1B3FBqA
- Good intuition (Search query idea)
- https://jalammar.github.io/illustrated-transformer/
- Nice illustrations
- CS25 Andrej Karparty Introduction to Transformers
- Nice intuition with message parsing https://www.youtube.com/watch?v=XfpMkf4rD6E

In Language: need for context

- Example
- Server, can I have the check?
- Looks like I just crashed the server
- We need the context, to understand the meaning of server.
- Server, can I have the check?
- Looks like I just crashed the server
- We need to encode the positional surrounding

A naïve approach

One Block would have $(700 \cdot 1000)^{2} \approx 490 \mathrm{~B}$ parameter

Too much for a single layer

Other architectures have been developed in the past. RNNs and LSTMs

Transformer

Attention Is All You Need
Ashish Vaswani
Google Brain

vaswani@google. com \begin{tabular}{c}
Noam Shazeer

Google Brain

noam@google.com

\quad

Niki Parmar

Google Research

nikip@google.com

Jakob Uszkoreit

Google Research

usz@google.com
\end{tabular}

Aidan N. Gomez*
University of Toronto
aidan@cs.toronto.edu
Illia Polosukhin ${ }^{*}$
illia.polosukhin@gmail.com

Abstract
he dominant sequence transduction models are based on complex recurrent or onvolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer, mechanism. We propose a new simple network architecture, the Transformer, entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-

Lukasz Kaiser*
Google Brain lukaszkaiser@google.com

Lion Jones
llion@google.com
to-German translation task, improving over the existing best results, including
\equiv Google Scholar \square

1 result (0.02 sec)

Attention is all you need

A Vaswani, N Shazeer, N Parmar... - Advances in neural ..., 2017 - proceedings.neurips.cc The dominant sequence transduction models are based on complex recurrent orconvolutional neural networks in an encoder and decoder configuration. The best pefforming such models also connect the encoder and decoder through an attentionm nd convolutions entirely. Experiments on two machine translatio asks show these m dels to be superiorin quality while being more \hat{H} Save 0 Cite Cited by 62992
https://arxiv.org/abs/1706.03762

- Introduced for translation
- Basis for Language models (GPT2, GPT-3, Chat-GPT, Bert)

The proposed network

The attention blocks are the novel components: "Attention is all you need".

Proposed for translation:

- Encoder summarizes the input in a context vector
- Decoder generates the output sequence, from context vector and previous output.

Many language models like GPT (Llama) just use the decoder part some like Bert the encoder.

Figure 1: The Transformer - model architecture.

GTP-Like Transformer

DECODER

Figure 1: The Transformer - model architecture.

The decoder only implementation. As in GTP

Follow the forward pass

Training parallelism

Attention Block

Information Processing

Information is processed in two steps first

- Along T
- Along C

Total Memory $\quad O(T)+O(C)$
Most operations along C-Direction

Intuition:: Weighted Average

Smoothing

$$
\tilde{y}_{i}=\sum W_{i j} y_{j}
$$

Weights sum up to 1
$\sum_{j} W_{i j}=1($ for all $i)$

Slide taken from Lennart Svensson

Intuition :: Weighted Average

Smoothing
$\tilde{y}_{i}=\sum W_{j i} y_{i}$
Weights sum up to 1
$\sum_{j} W_{j i}=1$ (for all i)

Observations (t, x)

Weight $W_{i j}$

Including the Neighborhood gives better prediction / representation

Intuition:: Weighted Average of words

To what does "friend" refer to?
Emma hates games but she is a great friend

- Word vectors: $\begin{array}{llllllllll}\mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} & \mathrm{x}_{4} & \mathrm{x}_{5} & \mathrm{x}_{6} & \mathrm{x}_{7} & \mathrm{x}_{8} & \mathrm{x}_{9}\end{array}$
- New representation of friend (which is less generic and describes friends in context of the other words j)
$-\widetilde{x_{9}}=\sum_{j} W_{9 j} x_{j}$
- Maybe better to use $v_{j}=W^{V} x_{j}$ instead of the value x_{j} to determine the weights (additional flexibility)
$-\widetilde{x_{9}}=\sum_{j} W_{9 j} v_{j}$
- \quad Note that weights $W_{9 j}$ are specific to friend (no 9)
- Which word(s) do you think should have height weights?
- To which word should the network pay attention when analyzing friend?

An example: Emma hates games but she is a great friend

- Imaging the network at a stage where it has to figure out the relationships of objects
- This could be done in the following space
- Dim1: Score that the word is a person name 1
- Dim2: Score that the word is animal name
- Dim3: Score that the word is a noun
- Dim4: Score that the word is an adjective
- Examples of attention/weight of friend to Emma
- Emma this is called a key
- Might be a person or animal name, it's a noun and no adjective
- $\mathrm{k}_{1}=(1.2,0.8,1.0,0.0)$
- Friend, the word itself might be (no person / animal name)
- $k_{9}=(0,0,1.0,0)$
- It look at (persons names, animals names, and adjectives).
- $\mathrm{q}_{9}=(1.0,0.9,0.5,1)$
- The similarity between i and j is the dot-product between q_{i} and k_{i}
- For $\mathrm{q}_{9}, \mathrm{k}_{1}=1.2 * 1+0.8 * 0.9+1.0 * .5+0 * 1=2.42$

From which word

Queries

Words looking at

	Emma	hates	games	but	she	is	a	great	friend
Pers	1.1	0.0	0.0	0.0	1.1	0.0	0.2	0.5	1.0
Anim	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9
Noun	0.9	1.0	1.0	0.0	0.0	0.0	1.0	1.0	0.5
Adj	0.0	0.0	0.0	0.0	-1.0	0.0	0.5	0.0	1.0

To which word

Keys

Words themself

	Emma	hates	games	but	she	is	a	great	friend
Pers	1.2	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
Anim	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Noun	1.0	-0.5	1.0	-1.0	0.0	-0.5	-1.0	-1.0	1.0
Adj	0.0	0.0	-1.0	0.0	-1.0	0.0	0.0	1.2	0.0

$\widetilde{W}_{\text {from,to }}$

				Emma	hates	games	but	she	is	a	great	friend
		from	Emma	2.78	-0.45	0.9	-0.9	1.1	-0.45	-0.9	-0.9	0.9
			hates	1.00	-0.50	1.0	-1.0	0.0	-0.50	-1.0	-1.0	1.0
			games	1.00	-0.50	1.0	-1.0	0.0	-0.50	-1.0	-1.0	1.0
			but	0.00	0.00	0.0	0.0	0.0	0.00	0.0	0.0	0.0
Emma	friend	$1.2 * 1+$	she	1.32	0.00	1.0	0.0	2.1	0.00	0.0	-1.2	0.0
1.2	1.0		is	0.00	0.00	0.0	0.0	0.0	0.00	0.0	0.0	0.0
0.8	0.9	$\begin{gathered} 0.8 * 0.9+ \\ 1.0 * .5+ \end{gathered}$	a	1.24	-0.50	0.5	-1.0	-0.3	-0.50	-1.0	-0.4	1.0
1.0	0.5		great	1.60	-0.50	1.0	-1.0	0.5	-0.50	-1.0	-1.0	1.0
0.0	1.0	$0 * 1=2.42$		2.42	-0.25	-0.5	-0.5	0.0	-0.25	-0.5	0.7	0.5

Implementation Detail

Queries
Words looking at
t to which word

Emma	hates	games	but	she	is	a	great	friend
1.2	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.0	-0.5	1.0	-1.0	0.0	-0.5	-1.0	-1.0	1.0
0.0	0.0	-1.0	0.0	-1.0	0.0	0.0	1.2	0.0

$\widetilde{W}_{f, t}=\sum_{i=1}^{9} Q_{i, f} \cdot K_{i, t}$
np.einsum('if,it->ft', Q,K)
The Einstein summation goes over repeated indices. Easy to extend when having higher dimensions tensors such as (B, T, C) np.einsum('bif,bit->bft', Q,K)

Normalization

- The weight matrix $W_{f, t}$ need to be normalized
- $W_{f, t}=\frac{e^{\widetilde{W}_{f, t}}}{\sum_{t} e^{\widetilde{W}_{f, t}}}$
$W_{f, t}=\operatorname{softmax}\left(\widetilde{W}_{f, t}\right)$

	Emma	hates	games	but	she	is	a	great	friend
Emma	0.61	0.02	0.09	0.02	0.11	0.02	0.02	0.02	0.09
hates	0.24	0.05	0.24	0.03	0.09	0.05	0.03	0.03	0.24
games	0.24	0.05	0.24	0.03	0.09	0.05	0.03	0.03	0.24
but	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11
she	0.19	0.05	0.14	0.05	0.41	0.05	0.05	0.02	0.05
is	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11
a	0.31	0.05	0.15	0.03	0.07	0.05	0.03	0.06	0.24
great	0.35	0.04	0.19	0.03	0.11	0.04	0.03	0.03	0.19
friend	0.58	0.04	0.03	0.03	0.05	0.04	0.03	0.10	0.09

2 Issues

1. Systematic dependency of "Peakyness" on dimension m of the query space

$$
W_{f, t}=\operatorname{softmax}\left(\frac{\widetilde{W}_{f, t}}{\sqrt{m}}\right)
$$

2. Causality. E.g. Emma is not allowed to depend on hates (we want parallel training)

Complete Code for weight matrix

The query, the keys, and the values

- Going into the query space, W^{Q} and W^{K} are learned!
- We summarize our search query for $x_{i}=$ "Friend" with $q_{i}=W^{Q} x_{i}$
- We summarize our search key with $k_{j}=W^{K} x_{j}$

$$
\mathrm{Q}=W^{Q} x
$$

- For averaging (getting the new value) also learned
$-\widetilde{x_{9}}=\sum_{j} W_{9 j} v_{j}$
- $v_{j}=W^{V} x_{j} \quad$ we take transformation v_{j} instead of x_{j}

Multihead Attention

- Choose query space dimension $m=C / H$ where H are number of heads. Same with values.

The complete Transformer Block

Position is not

Who does "friend" refer to?

Emma hates games but she is a great friend

- Word vectors: $\begin{array}{llllllllll}\mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} & \mathrm{x}_{4} & \mathrm{x}_{5} & \mathrm{x}_{6} & \mathrm{x}_{7} & \mathrm{x}_{8} & \mathrm{x}_{9}\end{array}$

There is no distance, coded yet.
The quantity x_{1} is just the first token x_{2} second.
GTP simply embeds uses the positions as token numbers $[0,1,2, \ldots, T]$ and embeds them.

Demo (ATTO-GTP)

https://github.com/ioskn/mldl_htwg/blob/master/transformers/atto_GTP.py

Training LLama2

Number of parameters 7B-70B
Number of Tokens $N_{\text {token }}=32 k$

Context Length $T=2 k-4 k$
Number of of Layers 32-80
Context Size C=4096-8192

Alignment Finetuning

Plain vanilla LLM prompt What is the capital of France?

What is France's largest city?
What is France's population?
What is the currency of France?

Finetuned versions (Chat-GPT and Chat LLama) prompt What is the capital of France?

Paris

Further aspects of fine tuning (Helpful, Honest, Harmless)

No magic in transformers. ...Then a miracle happens

Hard to make predictions, these days

Yann LeCun
 Jan 2022

"I take an object, I put it on the table, and I push the table [...] GPT-5000 is never gona learn what happens, this information is not present in any text.

ChatGPT-3.5 (Dec 2022)

I put an object on the table and I push the table. What happens to the object? Give your best
guess in max 3 sentences.

When you push the table, the object on it is likely to move along with the table, assuming the push isn't too violent or the object isn't overly fragile or unstable. The object's movement will
be subject to the principles of inertia and friction; it will try to remain in its current state of motion until an external force acts upon it. However, if the push is too forceful, the object might slide or topple over.

More is different

- LLM where trained to predict the next token in a sequence of tokens but...

- Just as dissecting a brain wouldn't necessarily reveal the nature of human consciousness, examining the mechanics of an LLM doesn't fully explain its emergent capabilities.

Thank you questions?

