

LLMs a Deep Dive into the mechanic Brown Bag Seminar IOS *Oliver Dürr*

Principles of ChatGPT

Describe your technology in one sentence.

I am a Generative Language model based on the transformer architecture that uses self-attention mechanisms and is trained with maximum likelihood principle to predict the next token in a sequence of tokens and generate new text.

Token = Part(s) of Word

The Task*

Describe your technology in one sentence.

Generative Language Models: "predict next token"

Generative Language models:

Like you pressing (most) probable suggestion

Describe your technology in one sentence.

I am a Generative Language model based on the transformer architecture that uses self-attention mechanisms and is trained with maximum likelihood principle to predict the next token in a sequence of tokens and generate new text.

Steps 1: Describe your technology in one sentence. \rightarrow I Steps 2: Describe your technology in one sentence. I \rightarrow am Steps 3: Describe your technology in one sentence. I am \rightarrow a Steps 4: Describe your technology in one sentence. I am a \rightarrow generative

Step 36 Describe your technology in one sentence. I am a ... new text. \rightarrow END

Sampling Repeated

Prompt

The weather is really nice today. I'm thinking about going for a

```
' day ....',
' walk ....',
' good ....',
' swim ....',
' swim ....',
' jog ....',
' nun ....',
' swim ....',
' swim ....',
' jog ....',
```

10 Calls to ChatGPT, resulting in different results.

Probabilities for next word

Prompt

The weather is really nice today. I'm thinking about going for a

Training / Maximum Likelihood Prinziple

Describe your technology in one sentence.

I am a Generative Language model based on the transformer architecture $rac{1}{2}$ $rac{1}{2}$ that uses self-attention mechanisms and is trained with maximum likelihood principle to predict the next token in a sequence of tokens and generate new text.

LLM are probabilistic models

Training: To predict the next token

- Training data:
 - "Whole Internet": arXiv + StackOverflow + …
 - LLaMMa*: 1T (1E12) Token
- Take samples
 - Take a text example where to know the answer
 - The weather is really nice today. I'm thinking about going for a walk
 - Use input x="The weather is really nice today. I'm thinking about going for a"
 - Observed value y="walk"
 - Output of model $p_{\theta}(y|\mathbf{x})$

- Tune the model so that $p_{\theta}(\text{``walk''}|x)$ is high

*LLaMA arXiv:2302.13971

Training: Loss Function = Likelihood of Data

Quiz:

- What is the worst model? What is $p_{\theta}(y = "walk" | \mathbf{x}) = ???$
 - $p_{\theta}(y = "walk" | \mathbf{x}_i) = 0$
 - $\log 0_+ = -\infty$
- What is the best model (for that single example)?
 - $p_{\theta}(y = "walk" | \mathbf{x_i}) = 1$
 - $\log 1 = 0$
- For that single example with observation y_i the following is a good loss
 - $-\log p_{\theta}(y_i|\mathbf{x}_i)$
- Minimization of that loss averaged over a batch of 4M tokens (negative log likelihood, NLL)
 - minimizing the NLL = maximizing the likelihood

Tokenization and Embedding

Describe your technology in one sentence.

I am a Generative Language model based on the transformer architecture \bigcirc \bigcirc that uses self-attention mechanisms and is trained with maximum likelihood principle to predict the next token in a sequence of tokens and generate new text.

Tokenization Deep Learning need numbers

- Deep Learning system need numbers
 - x_i ="The weather is really nice today. I'm thinking about going for a"
- Simple Tokenization(ASCII)

cook@p	pop-os:^	~\$ a	ascii -	d											
Θ	NUL	16	DLE	32		48	0	64	ລ	80	Р	96		112	р
1	SOH	17	DC1	33		49	1	65	А	81	Q	97	a	113	q
2	STX	18	DC2	34		50	2	66	В	82	R	98	b	114	r
3	ETX	19	DC3	35	#	51	3	67	С	83	S	99	с	115	s
4	EOT	20	DC4	36	\$	52	4	68	D	84	Т	100	d	116	t
5	ENQ	21	NAK	37	%	53	5	69	E	85	U	101	е	117	u
6	ACK	22	SYN	38	8	54	6	70	F	86	٧	102	f	118	v
7	BEL	23	ETB	39		55	7	71	G	87	W	103	g	119	w
8	BS	24	CAN	40	(56	8	72	н	88	Х	104	ĥ	120	х
9	HT	25	EM	41)	57	9	73	I	89	Y	105	i	121	y
10	LF	26	SUB	42		58		74	J	90	Ζ	106	j	122	z
11	VT	27	ESC	43		59	:	75	К	91	ſ	107	k	123	{
12	FF	28	FS	44		60	, <	76	L	92	Ň	108	ι	124	í –
13	CR	29	GS	45		61		77	М	93	1	109	m	125	}
14	S0	30	RS	46		62	>	78	N	94	~	110	n	126	
15	SI	31	US	47	/	63	?	79	0	95		111	0	127	DEL

- x_i ="The weather is really nice today. I'm thinking about going for a"
- $x_i = (84, 104, 101, 32, 119, \dots, 32, 97)$
- And what with "Köche präferieren süße Schokolädentörtchen."

Tokens in LLM

ChatGPT works with tokens not with words. It has 50257 different tokens.

https://platform.openai.com/tokenizer

English is coded shorter (since most of text is in English for BPE Algorithm) Fun Fact: "spell lollipop backwards" used to trick ChatGPT(before 25 Sep Version)

Understand Text as a Sequence of Vectors

• After Tokenization and Embedding Text looks like

In DL we usually take batches the primary object of interest a tensors of size 3 with (B, T, C) dimensions

The architecture

Describe your technology in one sentence.

I am a Generative Language model based on the transformer architecture that uses self-attention mechanisms and is trained with maximum likelihood principle to predict the next token in a sequence of tokens and generate new text.

Sources for Transformer

 Live Codeing (and explanation) Andrej Karparthy nano-GPT <u>https://youtu.be/kCc8FmEb1nY</u>

Let's build GPT: from scratch, in code, spelled out.

Andrej Karpathy 3,1 Mio. Aufrufe • vor 9 Monaten

Further Resources

- CS25 Andrej Karparty Introduction to Transformers
 - Nice intuition with message parsing https://www.youtube.com/watch?v=XfpMkf4rD6E
- Lennart Svensson: <u>https://youtu.be/0SmNEp4zTpc</u>
 - Good intuition (weighted average, mathematical sound)
- Ava Soleimany: <u>https://www.youtube.com/watch?v=QvkQ1B3FBqA</u>
 - Good intuition (Search query idea)
- https://jalammar.github.io/illustrated-transformer/
 - Nice illustrations
- CS25 Andrej Karparty Introduction to Transformers
 - Nice intuition with message parsing https://www.youtube.com/watch?v=XfpMkf4rD6E

In Language: need for context

- Example
 - <u>Server</u>, can I have the check?
 - Looks like I just crashed the server
- We need the context, to understand the meaning of server.
 - <u>Server</u>, can I have the **check**?
 - Looks like I just crashed the server
- We need to encode the positional surrounding

A naïve approach

One Block would have $(700 \cdot 1000)^2 \approx 490B$ parameter

Too much for a single layer

Other architectures have been developed in the past. RNNs and LSTMs

Transformer

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com	Noam Shazeer* Google Brain noam@google.com	Nik Goog nikip©	i Parmar * le Research google.com	Jakob Uszkoreit * Google Research usz@google.com
Llion Jones* Google Research llion@google.com	Aidan N. Gome: University of Toro aidan@cs.toronto	z * † onto o.edu	Łuka Goo lukaszkais	sz Kaiser * gle Brain ser@google.com
	Illia Polosu illia.polosukhi	khin *‡ n@gmail	.com	
	Abstra	act		
The dominant sequences convolutional neura	ence transduction mode I networks that include	els are ba e an enco	sed on complex der and a deco	t recurrent or der. The best

ne dominant sequence trainstruction indeels are based on complex recurrent of convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 Englishto-German translation task, improving over the existing best results, including

=	Google Scholar	٩	
٠	Articles	1 result (0.02 sec)	
	Lookup	Attention is all you need <u>A Vaswani, N Shazeer</u> , N Parmar Advances in neural, 2017 - proceedings.neurips.cc The dominant sequence transduction models are based on complex recurrent orconvolutional neural networks in an encoder and decoder configuration. The best performing such models also connect the encoder and decoder through an attention mechanisms. We propose a novel, simple network architecture based solely onan attention mechanism, disperting the transmission of the convolutions entirely. Experiments on two machine translation $☆$ Save \Im Citee Cited by 62992 F	[PDF] neurips.cc

https://arxiv.org/abs/1706.03762

- Introduced for translation
- Basis for Language models (GPT-2, GPT-3, Chat-GPT, Bert)

The proposed network

The attention blocks are the novel components: "Attention is all you need".

Proposed for translation:

- Encoder summarizes the input in a context vector
- Decoder generates the output sequence, from context vector and previous output.

Many language models like GPT (Llama) just use the decoder part some like Bert the encoder.

Figure 1: The Transformer - model architecture.

GTP-Like Transformer

DECODER

The decoder only implementation. As in GTP

Follow the forward pass

The dimension of the tensor (*B*, *T*, *C*) stays, it is just *transformed.* Mostly along C dimension.

softmax(*B*, *T*, *N*_{token})

LayerNorm(B, T, C)

The weather is really nice today. I'm thinking about going for a

Training parallelism

Attention ("Causality")

When predicting next word only information from pervious token must be used.

[791, 9282, 374, 2216, 6555, 3432, 13, 358, 2846, 7422, 922, 2133, 369, 264, 198]

The weather is really nice today. I'm thinking about going for a

Attention Block

Information is processed in two steps first

- Along T
- Along C Total Memory O(T) + O(C)Most operations along C-Direction

Intuition:: Weighted Average

Smoothing $\tilde{y}_i = \sum W_{ij} y_j$

Weights sum up to 1 $\sum_{j} W_{ij} = 1$ (for all *i*)

Intuition :: Weighted Average

Smoothing $\tilde{y}_i = \sum W_{ji} y_i$ Weights sum up to 1 $\sum_j W_{ji} = 1$ (for all *i*)

Including the Neighborhood gives better prediction / representation

Intuition:: Weighted Average of words

To what does "friend" refer to?

Emma hates games but she is a great friend Word vectors: $x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9$

• New representation of friend (which is less generic and describes friends in context of the other words j)

 $-\widetilde{x_9} = \sum_j W_{9j} x_j$

ullet

• Maybe better to use $v_j = W^V x_j$ instead of the value x_j to determine the weights (additional flexibility)

 $-\widetilde{x_9} = \sum_j W_{9j} v_j$

- Note that weights W_{9j} are specific to friend (no 9)
 - Which word(s) do you think should have height weights?
 - To which word should the network pay attention when analyzing friend?

An example: Emma hates games but she is a great friend

- Imaging the network at a stage where it has to figure out the relationships of objects
- This could be done in the following space
 - Dim1: Score that the word is a person name 1
 - Dim2: Score that the word is animal name **
 - Dim3: Score that the word is a noun
 - Dim4: Score that the word is an adjective
- Examples of attention /weight of friend to Emma
 - Emma this is called a key
 - Might be a person or animal name, it's a noun and no adjective
 - $k_1 = (1.2, 0.8, 1.0, 0.0)$
 - Friend, the word **itself** might be (no person / animal name)
 - $k_9 = (0,0,1.0,0)$
 - It look at (persons names, animals names, and adjectives).
 - $q_9 = (1.0, 0.9, 0.5, 1)$
- The similarity between *i* and *j* is the dot-product between q_i and k_i - For q_9 , $k_1=1.2 * 1 + 0.8 * 0.9 + 1.0 * .5 + 0 * 1 = 2.42$

From which word

Queries Words looking at

	Emma	hates	games	but	she	is	а	great	friend
Pers	1.1	0.0	0.0	0.0	1.1	0.0	0.2	0.5	1.0
Anim	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9
Noun	0.9	1.0	1.0	0.0	0.0	0.0	1.0	1.0	0.5
Adj	0.0	0.0	0.0	0.0	-1.0	0.0	0.5	0.0	1.0

To which word

	Emma	hates	games	but	she	is	а	great	friend
Pers	1.2	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
Anim	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Noun	1.0	-0.5	1.0	-1.0	0.0	-0.5	-1.0	-1.0	1.0
Adj	0.0	0.0	-1.0	0.0	-1.0	0.0	0.0	1.2	0.0

$\widetilde{W}_{\text{from,to}}$

Words themself

Keys

to

				Emma	hates	games	but	she	is	а	great	friend
			Emma	2.78	-0.45	0.9	-0.9	1.1	-0.45	-0.9	-0.9	0.9
		from	hates	1.00	-0.50	1.0	-1.0	0.0	-0.50	-1.0	-1.0	1.0
		nom	games	1.00	-0.50	1.0	-1.0	0.0	-0.50	-1.0	-1.0	1.0
			but	0.00	0.00	0.0	0.0	0.0	0.00	0.0	0.0	0.0
Emma	friend		she	1.32	0.00	1.0	0.0	2.1	0.00	0.0	-1.2	0.0
1.2	1.0	1.2 * 1 +	is	0.00	0.00	0.0	0.0	0.0	0.00	0.0	0.0	0.0
0.8	0.9	0.8 * 0.9 +	а	1.24	-0.50	0.5	-1.0	-0.3	-0.50	-1.0	-0.4	1.0
1.0	0.5	1.0 * .5 +	great	1.60	-0.50	1.0	-1.0	0.5	-0.50	-1.0	-1.0	1.0
0.0	1.0	0 * 1 = 2.42	friend	2.42	-0.25	-0.5	-0.5	0.0	-0.25	-0.5	0.7	0.5

Implementation Detail

From which word

			Emma	hates	games	but	she	is	а	great	friend	
	- I	Pers	1.1	0.0	0.0	0.0	1.1	0.0	0.2	0.5	1.0	
Ourseries		Anim	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	
Queries Warda la aking at	l	Noun	0.9	1.0	1.0	0.0	0.0	0.0	1.0	1.0	0.5	
words looking at		Adj	0.0	0.0	0.0	0.0	-1.0	0.0	0.5	0.0	1.0	
			_			t	to v	vhicł	ו wor	ď		
Kove			Emma	hates	games	but	she	is	а	great	friend	b
NCYS		Pers	1.2	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0)
			0.0	0.0	0.0	0.0	0.0	~ ~	0.0		0.4	_

rds thomsalf		Pers	1.2	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
		Anim	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	i	Noun	1.0	-0.5	1.0	-1.0	0.0	-0.5	-1.0	-1.0	1.0
		Adj	0.0	0.0	-1.0	0.0	-1.0	0.0	0.0	1.2	0.0

$$\widetilde{W}_{f,t} = \sum_{i=1}^{9} Q_{i,f} \cdot K_{i,t}$$

np.einsum('if,it->ft', Q,K)

The Einstein summation goes over repeated indices. Easy to extend when having higher dimensions tensors such as (B,T,C) np.einsum('bif,bit->bft', Q,K)

Normalization

• The weight matrix $W_{f,t}$ need to be normalized

•
$$W_{f,t} = \frac{e^{W_{f,t}}}{\sum_{t} e^{\widetilde{W}_{f,t}}}$$

$$W_{f,t} = \operatorname{softmax}(\widetilde{W}_{f,t})$$

	Emma	hates	games	but	she	is	а	great	friend
Emma	0.61	0.02	0.09	0.02	0.11	0.02	0.02	0.02	0.09
hates	0.24	0.05	0.24	0.03	0.09	0.05	0.03	0.03	0.24
games	0.24	0.05	0.24	0.03	0.09	0.05	0.03	0.03	0.24
but	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11
she	0.19	0.05	0.14	0.05	0.41	0.05	0.05	0.02	0.05
is	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11
а	0.31	0.05	0.15	0.03	0.07	0.05	0.03	0.06	0.24
great	0.35	0.04	0.19	0.03	0.11	0.04	0.03	0.03	0.19
friend	0.58	0.04	0.03	0.03	0.05	0.04	0.03	0.10	0.09

2 Issues

1. Systematic dependency of "Peakyness" on dimension m of the query space

$$W_{f,t} = \operatorname{softmax}(\frac{\widetilde{W}_{f,t}}{\sqrt{m}})$$

2. Causality. E.g. Emma is not allowed to depend on hates (we want parallel training)

Complete Code for weight matrix

```
m = Q.shape[0]
wtilde = np.einsum('if,it->ft', Q,K)
T = wtilde.shape[0]
for i in range(0,T):
    for j in range(i+1, T):
        wtilde[i,j] = -np.inf
w = softmax(wtilde/np.sqrt(m))
pd.DataFrame(np.round(w, 2), columns=df_queries.index, index=df_keys.index)
```

./	\cap (26
\sim	0.0	12

_										
		Emma	hates	games	but	she	is	а	great	friend
	Emma	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	hates	0.68	0.32	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	games	0.40	0.19	0.40	0.00	0.00	0.00	0.00	0.00	0.00
	but	0.25	0.25	0.25	0.25	0.00	0.00	0.00	0.00	0.00
	she	0.23	0.12	0.20	0.12	0.34	0.00	0.00	0.00	0.00
rom	is	0.17	0.17	0.17	0.17	0.17	0.17	0.00	0.00	0.00
	а	0.27	0.11	0.19	0.09	0.13	0.11	0.09	0.00	0.00
	great	0.26	0.09	0.19	0.07	0.15	0.09	0.07	0.07	0.00
	friend	0.30	0.08	0.07	0.07	0.09	0.08	0.07	0.13	0.12

The query, the keys, and the values

- Going into the query space, W^Q and W^K are learned!
 - We summarize our search **query** for $x_i = "Friend"$ with $q_i = W^Q x_i$
 - We summarize our search **key** with $k_i = W^K x_i$

$$\mathbf{Q} = W^Q \mathbf{x}$$

- For averaging (getting the new value) also learned
 - $\widetilde{x_9} = \sum_j W_{9j} v_j$ - $v_j = W^V x_j$ we take transformation v_j instead of x_j

Multihead Attention

• Choose query space dimension m = C/H where H are number of heads. Same with values.

The complete Transformer Block

Position is not

Who does "friend" refer to?

		Emma	hates g	james	but	she	is	а	great	friend	
•	Word vectors:	x ₁	x ₂	X 3	X ₄	X 5	x ₆	X 7	X 8	X ₉	

There is no distance, coded yet.

The quantity x_1 is just the first token x_2 second.

GTP simply embeds uses the positions as token numbers [0,1,2,...,T] and embeds them.

Demo (ATTO-GTP)

https://github.com/ioskn/mldl_htwg/blob/master/transformers/atto_GTP.py

Training LLama2

Number of parameters 7B-70B Number of Tokens $N_{\text{token}} = 32k$

Context Length T = 2k - 4kNumber of of Layers 32-80 Context Size C=4096-8192

46

Alignment Finetuning

Plain vanilla LLM prompt **What is the capital of France?**

What is France's largest city?What is France's population?What is the currency of France?

Finetuned versions (Chat-GPT and Chat LLama) prompt What is the capital of France? Paris

Further aspects of fine tuning (Helpful, Honest, Harmless)

No magic in transformers. ...Then a miracle happens

Hard to make predictions, these days

Yann LeCun Jan 2022

"I take an object, I put it on the table, and I push the table [...] GPT-5000 is never gona learn what happens, this information is not present in any text.

ChatGPT-3.5 (Dec 2022)

I put an object on the table and I push the table. What happens to the object? Give your best guess in max 3 sentences.

More is different

• LLM where trained to predict the next token in a sequence of tokens but...

• Just as dissecting a brain wouldn't necessarily reveal the nature of human consciousness, examining the mechanics of an LLM doesn't fully explain its emergent capabilities.

