H T W G

Hochschule Konstanz Technik, Wirtschaft und Gestaltung

Novel uncertainty models for active learning

Daniel Dold HTWG Konstanz Institute for Optical Systems

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Hochschule Konstanz

11.03.2021

Content

- What is active learning
- Current Bayesian neural networks
- Different uncertainty measures
- First results with active learning
- Outlook

What is active learning

. •

• .

.

Hochschule Konstanz

.

.

11.03.2021

3

Active learning loop

- Labeling is expensive
 - Need of human experts
- Aim: Reduce the amount of labeling
- Idea: Use **uncertainty** to propose new candidate

Human-in-the-loop

Two kind of uncertainty

➔ We need epistemic uncertainty for AL

Bayesian neural networks (BNNs)

BNNs include epistemic uncertainty

Bayesian model averaging (BMA)

$$p(y|x,D) = \int p(y|x,\theta) \cdot p(\theta|D) d\theta$$

Posterior predictive distribution (ppd)

Using different approximations

- Variational Inference
- MC-Dropout
- Deep Ensembles
- SWAG/ MultiSWAG

Variational inference

$$p(y|x,D) = \int p(y|x,\theta) \cdot p(\theta|D) d\theta \approx \int p(y|x,\theta) \cdot q_{\lambda}(\theta) d\theta$$
$$p(\theta|D) \approx q_{\lambda}(\theta)$$

- Aim: Approximate a complicated posterior $p(\theta|D)$ with a simpler one $q_{\lambda}(\theta)$.
- Challenge: Tune λ until variational distribution is as close as possible to the real posterior distribution

Minimize reverse KL-divergence

$$KL[q_{\lambda}(\theta)||p(\theta|D)] = \int q_{\lambda}(\theta) \log \frac{q_{\lambda}(\theta)}{p(\theta|D)} d\theta$$

$$\lambda^{*} = \operatorname{argmin}\{KL[q_{\lambda}(\theta)||p(\theta)] - \mathbb{E}_{\theta \sim q_{\lambda}}[\log p(D|\theta)]\}$$

 $q_{\lambda}(\theta_1)$ $p(\theta_1|D)$

MC-Dropout

(Gal et al., 2016)*

Use Dropout during training and inference $p(y|x,D) = \int p(y|x,\theta) \cdot p(\theta|D)d\theta$ $\approx \int p(y|x,\theta) \cdot q_{\theta}^{*}(\theta)d\theta$ ^{a)}

$$\approx \frac{1}{T} \sum_{t=1}^{T} p(y|x, \theta_t)$$

Hochschule Konstanz

11.03.2021 8

*Gal, Y., & Uk, Z. A. (2016). Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning Zoubin Ghahramani. PMLR. http://yarin.co.

DeepEnsembles

(Lakshminarayanan et al., 2017)*

$$p(y|x,D) = \int p(y|x,\theta) \cdot p(\theta|D) d\theta \approx \frac{1}{M} \sum_{m=1}^{M} p(y|x,\theta_m)$$

- Initialize *M* models independently
- Train each model independent
- Training with adversarial examples (not necessary)

Hochschule Konstanz

11.03.2021 9

*Lakshminarayanan, B., Pritzel, A., & Deepmind, C. B. (2017). Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles.

SWAG

(Maddox et al., 2019)*¹

- Extension of Stochastic Weight Averaging (SWA) (Izmailov et al., 2018)*2
- Model weights with gaussian distribution
- Algorithm:
 - Pretrain model
 - Retrain model and compute statistics after each epoch:
 - SWA \rightarrow compute $\bar{\theta}_{SWA}$
 - SWAG \rightarrow compute $\bar{\theta}_{SWA}, \Sigma_{diag}$ or $\bar{\theta}_{SWA}, \Sigma_{low-rank}$

$$p(y|x,D) = \int p(y|x,\theta) \cdot p(\theta|D) d\theta \approx \frac{1}{T} \sum_{t=1}^{T} p(y|x,\theta_t), \qquad \theta_t \sim N(\bar{\theta}_{SWA}, \Sigma)$$

MultiSWAG: Combine SWAG with DeepEnsembles (Wilson et al., 2020)*³ ۲

10

11.03.2021

Hochschule Konstanz *1 Maddox, W., Garipov, T., Izmailov, P., Vetrov, D., & Wilson, A. G. (2019). A Simple Baseline for Bayesian Uncertainty in Deep Learning. *² Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., & Wilson, A. G. (2018). Averaging Weights Leads to Wider Optima and Better Generalization. 34th Conference on Uncertainty in Artificial Intelligence 2018 *3 Wilson, A. G., & Izmailov, P. (2020). Bayesian Deep Learning and a Probabilistic Perspective of Generalization.

First experiments on regression data

Reproduce Wilson's results*

Epistemic uncertainty comparison between HMC, Deep Ensembles and VI. Image taken from Wilson*

*Wilson, A. G., & Izmailov, P. (2020). Bayesian Deep Learning and a Probabilistic Perspective of Generalization.

Active Learning with classification

Entropy as a measure of uncertainty

In general:

$$H = -\sum_{c=1}^{C} p_c \log p_c$$

Entropy from ppd samples of data example *x*

$$H(x) \approx -\sum_{c} \left(\frac{1}{T} \sum_{t=1}^{T} p(y_c | x, \theta_t) \right) \log \left(\frac{1}{T} \sum_{t=1}^{T} p(y_c | x, \theta_t) \right)$$

BALD another uncertainty measure Bayesian Active Learning by Disagreement

- Uncertainty decomposition
 - BALD (Houlsby et al., 2011) can be interpreted as epistemic uncertainty (Depeweg et al., 2017)

$$BALD = H[y|x, D] - \mathbb{E}_{\theta \sim p(\theta|D)}[H[y|x, \theta]]$$

$$BALD \approx -\sum_{c} \left(\frac{1}{T} \sum_{t=1}^{T} p(y_{c}|x, \theta_{t})\right) \log\left(\frac{1}{T} \sum_{t=1}^{T} p(y_{c}|x, \theta_{t})\right) + \frac{1}{T} \sum_{t, c} p(y_{c}|x, \theta_{t}) \log p(y_{c}|x, \theta_{t})$$

$$\sum uncertainty$$

$$aleatoric uncertainty$$

Hochschule Konstanz

11.03.2021 15

*Houlsby, N., Huszár, F., Ghahramani, Z., & Lengyel, M. (2011). Bayesian Active Learning for Classification and Preference Learning.

Acquisition functions (classification)

• Entropy

$$H(x) \approx -\sum_{c} \overline{p}(y_{c}|x) \log \overline{p}(y_{c}|x)$$

$$\overline{p}(y_c|x) \stackrel{\text{\tiny def}}{=} \frac{1}{T} \sum_{t=1}^T p(y_c|x, \theta_t)$$

- BALD (Houlsby et al., 2011) $I[y, \theta | x, D] \approx -\sum_{c} \overline{p}(y_{c} | x) \log \overline{p}(y_{c} | x) + \frac{1}{T} \sum_{t, c} p(y_{c} | x, \theta_{t}) \log p(y_{c} | x, \theta_{t})$
- Variation-ratio (Freeman, 1965) $VarRatio(x) = 1 - \max_{y} \overline{p}(y_c|x)$
- Random

Primary results with AL On MNIST dataset

Hochschule Konstanz

11.03.2021

Compare with Gal*

Hochschule Konstanz

MNIST Test Acc vs number of data (detail) 1.000 0.975 0.950 - ANTHEN FRANC 0.925 NTYFE. query_strategy acc 0.900 Entropy Random 0.875 Bald VarRatio 0.850 MeanSTD model 0.825 McDropout McDropoutGal 0.800 200 400 600 800 1000 0 nb_samples

*Gal, Y., Islam, R., & Ghahramani, Z. (2017). Deep Bayesian Active Learning with Image Data. 34th International Conference on Machine Learning, ICML 2017

18

11.03.2021

Compare ACC

MNIST test acc. Models: ['DeepEnsembles' 'MLE_Dropout' 'McDropout' 'Swag' 'VariationalInference'] With 8 seeds per experiment

Model	Query strategy	AUC	Standard error	N
DeepEnsembles	Bald	0,908	3,12E-03	4
DeepEnsembles	Entropy	0,913	2,26E-03	4
DeepEnsembles	Random	0,888	3,43E-03	4
DeepEnsembles	VarRatio	0,918	3,40E-03	4
McDropout	Bald	0,885	1,43E-03	8
McDropout	Entropy	0,880	2,77E-03	8
McDropout	Random	0,882	1,57E-03	8
McDropout	VarRatio	0,892	2,12E-03	8
Swag	Bald	0,888	2,80E-03	8
Swag	Entropy	0,907	3,60E-03	8
Swag	Random	0,897	1,76E-03	8
Swag	VarRatio	0,918	1,74E-03	8
VariationalInference	Bald	0,902	2,31E-03	5
VariationalInference	Entropy	0,907	1,85E-03	5
VariationalInference	Random	0,895	1,80E-03	5
VariationalInference	VarRatio	0,916	9,57E-04	5

Hochschule Konstanz

19

Compare MLE solution with BNNs

Hochschule Konstanz

11.03.2021 20

The power of ensembles for active learning in image classification (Beluch et al., 2018)*

*Beluch Bcai, W. H., Nürnberger, A., & Bcai, J. M. K. (2018). The power of ensembles for active learning in image classification. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

Don't cut corners

Continue Training

Hochschule Konstanz

First results on MNIST

- MNIST dataset is too simple
 - No statement about models or acquisition functions
 - No advantage due to epistemic uncertainty
- Using acquisition functions motivated by uncertainty performs better than random.
- AL requires retraining from scratch.

· · · · · · · ·

Hochschule Konstanz Technik, Wirtschaft und Gestaltung

Thanks for your attention

· · ·

.

. . . .

Hochschule Konstanz

